
CakeML: bootstrapping a
verified compiler

Ramana Kumar

COMP4161, 20 October 2015

www.data61.csiro.au

Question
What is this function, foo, more often called?

foo f [] = []
foo f (h # t) = f h # foo f t

Answer
map f [] = []
map f (h # t) = f h # map f t

2 | CakeML | Ramana Kumar

Question
What about this one?

bar [] = 0
bar (h # t) = Suc (bar t)

Answer
length [] = 0
length (h # t) = Suc (length t)

Note
7 = Suc (Suc (Suc (Suc (Suc (Suc (Suc 0))))))

3 | CakeML | Ramana Kumar

Spot the differences

Example 1

map f [] = []
map f (h # t) = f h # map f t

Example 2

` (∀ f . map f [] = []) ∧
∀ f h t. map f (h # t) = f h # map f t

Answer
Example 1 is a pair of equations.
Example 2 is a theorem: it has a turnstile, a conjunction, and
explicit universal quantification.
(But they mean the same thing.)

4 | CakeML | Ramana Kumar

What you learned last month

Question
Can you prove this?

∀ l f . length (map f l) = length l

Answer
Yes! By induction on the list l , simplifying with the definitions of
map and length.
But we are interested in even simpler theorems...

5 | CakeML | Ramana Kumar

Simple theorems

Question
Can you prove this?

map length [[]; [[]; []]; [[]]] = [0; 2; 1]

Or this?
length (map Suc [1; 2; 0]) = 3

Answer
Simplification...
In fact, you only need the left-hand side of the equation in order to
produce the theorem.

6 | CakeML | Ramana Kumar

Evaluation problems

Definition
An evaluation problem is a term that does not contain any
variables (only known constants and concrete data).
A solution is a theorem ` tm = tm′, where tm′ cannot be simplified
further.

7 | CakeML | Ramana Kumar

Example

Consider the constant while, which satisfies the following
equation.

` while P g x = if P x then while P g (g x) else x

An evaluation problem

What is the solution for this input term?
while (λ x. x = 0) (λ x. x) 1

Answer
` while (λ x . x = 0) (λ x . x) 1 = 1

8 | CakeML | Ramana Kumar

Example

Another evaluation problem

What about this input term?
while (λ x. x = 0) (λ x. x) 0

Answer
...
Simplification loops. There is no solution.

Note
But I thought HOL was a logic of total functions?
It is. while is total. We just cannot prove anything interesting
about its value on the arguments above.

9 | CakeML | Ramana Kumar

Evaluation automation

How does simplification work?

Roughly, given a set of rewriting theorems,

1. Find a subterm that matches the left-hand side of one of the
rewrite theorems.

2. Apply primitive proof steps to replace that subterm with the
rewrite theorem’s right-hand side.

3. Repeat until no subterms can be found.

Clearly this procedure can sometimes loop forever.

10 | CakeML | Ramana Kumar

Proof tools steer the kernel

Kernel as an API for theorems

• Theorem prover kernel provides primitive methods for
constructing theorems.

• Tools (like the simplifier) call these methods.

• Therefore, tools do not need to be trusted: only
kernel-sanctioned theorems can be produced.

Isabelle and HOL4 support this view (“LCF-style”).

11 | CakeML | Ramana Kumar

Evaluation within the logic

Call-by-value proof automation

• High-performance simplification:
I Choose a good evaluation strategy.
I Use techniques from functional programming.

• HOL4 includes such automation (called EVAL).
It can be extended with user-defined automation.

• Performance is fundamentally limited.
I At best, simplification is akin to interpreting a program.
I And, every step ultimately goes through the kernel.

12 | CakeML | Ramana Kumar

Evaluation outside the logic

Trusted code generation

• Isabelle also offers another method:
I Print the input term in a functional programming language.
I Compile and run the program.
I Read back the result.

• Faster than EVAL, because the program is compiled and
optimised before it is run.

• But, this does not produce a proof.
I The result theorem needs to be asserted as an axiom.
I Much care is required to ensure this axiom is plausible.

We will return to this later.

13 | CakeML | Ramana Kumar

Counting steps

Question
Can you count the number of reductions (applications of a single
rewrite rule) taken in solving an evaluation problem?

Answer
Yes: augment the simplifier so it counts how many rewrites it
applies, and returns the count alongside the theorem.

Example

Simplify and count: while (λ x. x < 2) Suc 0.
returns: (` while (λ x . x < 2) Suc 0 = 2, 2 rewrites)
(Actually: 216 primitive inference steps.)

14 | CakeML | Ramana Kumar

Counting steps inside the logic

Question
How about reasoning about the number of steps?

Problem
The simplifier is outside the logic, just using the kernel API.
Inside the logic, the number of steps is completely invisible.

Totally different approach

Formalise simplification within the logic.
Use a deep embedding.

15 | CakeML | Ramana Kumar

Deep embeddings

Question
What might this datatype be used for?
lit = IntLit int | Char char | StrLit string | Word8 byte

Answer
exp =

Lit lit

| Var (string id)
| Con (string id option) (exp list)
| Fun string exp

| App op (exp list)
| If exp exp exp

| Raise exp

| Handle exp ((pat × exp) list)
| . . .

16 | CakeML | Ramana Kumar

Functional semantics

Some meanings

evaluate st env [Lit l] = (st,Rval [Litv l])
evaluate st env [Fun x e] = (st,Rval [Closure env x e])
evaluate st env [Var n] =

case lookup_var_id n env of
None ⇒ (st,Rerr (Rabort Rtype_error))

| Some v ⇒ (st,Rval [v])

Pulling apart closures

do_call [Closure env n e; v2] =
Some (env with v := (n,v2) # env .v,e)

do_call [Litv l ; v2] = None

. . .

17 | CakeML | Ramana Kumar

Functional semantics has a clock

Function applications tick

evaluate st env [Call e1 e2] =
case evaluate st env [e1; e2] of

(st ′,Rval vs) ⇒
(case do_call (reverse vs) of
None ⇒ (st ′,Rerr (Rabort Rtype_error))

| Some (env ′,e) ⇒
if st ′.clock = 0 then

(st ′,Rerr (Rabort Rtimeout_error))
else
evaluate (st ′ with clock := st ′.clock − 1) env ′ [e])

| (st ′,Rerr _) ⇒ (st ′,Rerr _)

The clock lets us prove termination for evaluate.

18 | CakeML | Ramana Kumar

CakeML

Language features

• functions: higher-order, polymorphic, mutually recursive

fn x => if x then "hi" else "bye";

let

fun f 0 = true | f n = g (n-1)

fun g n = n = 1 orelse f (n-1)

in f end

• datatypes: recursive, pattern-matching

• state (references), exceptions, modules

A real programming language.
But many similarities to HOL.

19 | CakeML | Ramana Kumar

Interlude: ML

What is ML?

• A family of programming languages, including Standard ML
and OCaml (and CakeML), developed by Milner and others in
the 70s.

• Many theorem provers are written in ML, including Isabelle
and HOL4.

• Stands for “meta-language”, because its original use was
implementing LCF theorem prover, which has an “object
language”, namely, the logic.

Nowadays a general programming language, and used in industry.

Characteristics
Functional, strict, impure, type safe, modular.

20 | CakeML | Ramana Kumar

Deep map

Remember this?
map f [] = []
map f (h # t) = f h # map f t

Compare

Dletrec

[("map","v3",
Fun "v4"

(Mat (VarS "v4")
[(PconS "nil" [],ConS "nil" []);
(PconS "::" [Pvar "v2"; Pvar "v1"],
ConS "::"

[Call (VarS "v3") (VarS "v2");
Call (Call (VarS "map") (VarS "v3")) (VarS "v1")])]))]

21 | CakeML | Ramana Kumar

Deep map, pretty-printed

Easier to read in concrete syntax

fun map v3 =

(fn v4 =>

case v4

of [] => []

| v2::v1 => (v3 v2::(map v3 v1)));

Let us name this deeply-embedded declaration map_dec.

22 | CakeML | Ramana Kumar

Proofs about deep embeddings

Another declaration
val it = map (fn x => (x + 1)) (1::2::0::[]);

Call this map_suc_dec.

Clock bound
As promised, we can now reason about the number of steps.
` evaluate_decs st env [map_dec; map_suc_dec] =

(st ′,_,Rval res)⇒
st.clock ≥ 10

How hard was this to prove?
Using EVAL the proof is short, but takes many seconds to run.

23 | CakeML | Ramana Kumar

More general proofs

Deep embeddings let us reason about the semantics in general.

Type safety

• We can define a type system over deeply-embedded syntax.

• We can prove that well-typed programs never crash (they only
diverge or terminate with a value or un-handled exception).

Alternative semantics

• You may have seen relational big-step semantics, as well as
small-step operational semantics.

• We can prove equivalences between different versions of the
semantics, and obtain a solid understanding of our language.

24 | CakeML | Ramana Kumar

Deep proofs are hard

Remember this?
` ∀ l f . length (map f l) = length l

How do we prove it about the deep embedding?

Induct, simp?

Nope: the deep embedding gets in the way.
It is possible, but much more cumbersome.
But can we get it automatically from the shallow proof?

(You may have seen a similar thing before, e.g., Autocorres.)

25 | CakeML | Ramana Kumar

Connecting shallow to deep

Question
What is the deep counterpart of this term?
Suc (Suc (Suc 0))

Answer
Litv (IntLit (toInt (Suc (Suc (Suc 0)))))
(of type v, rather than nat)

26 | CakeML | Ramana Kumar

Connecting shallow to deep

Question
How about the unit value?
()

Answer
Conv None []

Refinement invariants
We can characterise these relationships:
INT i v ⇐⇒ v = Litv (IntLit i)
NAT n v ⇐⇒ INT (toInt n) v
UNIT u v ⇐⇒ v = Conv None []

27 | CakeML | Ramana Kumar

Shallow to deep datatypes

Question
What is the deep counterpart of this term?
[0; 2; 1]

Answer
ConvS "list" "::"

[Litv (IntLit 0);
ConvS "list" "::"

[Litv (IntLit 1);
ConvS "list" "::" [Litv (IntLit 2); ConvS "list" "nil" []]]]

Refinement invariant
LIST A ls v means v relates to ls, if A relates the elements.
LIST A [] v ⇐⇒ v = ConvS "list" "nil" []
LIST A (h # t) v ⇐⇒
∃ v1 v2. v = ConvS "list" "::" [v1; v2] ∧ A h v1 ∧ LIST A t v2

28 | CakeML | Ramana Kumar

Connecting shallow to deep

Question
What is the deep counterpart of this term?
λ x. x + x

Answer
Closure env "x" (App (Opn Plus) [VarS "x"; VarS "x"])

There are many answers, for many envs.
(Not to mention the many equivalent expressions.)

Refinement invariant
How can we characterise this relationship?

29 | CakeML | Ramana Kumar

Shallow to deep functions

Refinement invariant
(NAT→ NAT) f v means:
v is a closure implementing the function f
(which should be of type nat→ nat, in this case)

Definition
(A→ B) f v ⇐⇒
∀ x v1.

A x v1 ⇒
∃ v2 env exp k.

(do_call [v ; v1] = Some (env,exp) ∧
evaluate (st0 with clock := k) env [exp] =

(st0,Rval [v2])) ∧ B (f x) v2

30 | CakeML | Ramana Kumar

Shallow to deep map

Question
What is the deep counterpart of this term?
map

Answer
Some closure, satisfying this refinement invariant:
((A→ B)→ LIST A→ LIST B) map

Is that enough?

Yes, only closures that behave like map satisfy this invariant.

31 | CakeML | Ramana Kumar

Shallow to deep expressions

Question
What is the deep counterpart of this term?
(λ x. x + x) 3

Trick question

That term does not correspond to a value (it can be simplified).

Answer
The deep counterpart is an expression, not a value:
Call (Fun "x" (App (Opn Plus) [VarS "x"; VarS "x"]))

(Lit (IntLit 3))

32 | CakeML | Ramana Kumar

Shallow to deep expressions

Correctness
What constitutes correspondence between shallow and deep?
Why is this
(λ x. x + x) 3
refined by this
Call (Fun "x" (App (Opn Plus) [VarS "x"; VarS "x"]))

(Lit (IntLit 3))
?

Answer
The semantics justifies the connection.
` ∃ k res.

evaluate (st0 with clock := k) env
[Call (Fun "x" (App (Opn Plus) [VarS "x"; VarS "x"]))

(Lit (IntLit 3))] =
(st0,Rval [res]) ∧ NAT ((λ x . x + x) 3) res

33 | CakeML | Ramana Kumar

Certificate theorems

Definition
A certificate theorem for deep embedding exp and refinement
invariant A states:
∃ k res.
evaluate (st0 with clock := k) env [exp] = (st0,Rval [res]) ∧
A res

We abbreviate this by Cert env exp A.

Example

` Cert env (ConS "::" [Con None []; ConS "nil" []])
(LIST UNIT [()])

34 | CakeML | Ramana Kumar

Certificate theorem for map

Question
What is the deep counterpart of map, considered as an expression?

Answer
Just a variable: VarS "map".
But it is only correct in the right environment:
` EnvContains [map_dec] env ⇒

Cert env (VarS "map") (((a→ b)→ LIST a→ LIST b) map)

Now, how can we use this certificate theorem?

35 | CakeML | Ramana Kumar

Deep results for shallow proofs

Remember this?
` length (map f l) = length l

The deep version

` EnvContains [map_dec; length_dec] env ⇒
LIST a l v1 ∧ lookup_var "l" env = Some v1 ⇒

(a→ b) f v2 ∧ lookup_var "f" env = Some v2 ⇒
Cert env

(Call (VarS "length")
(Call (Call (VarS "map") (VarS "f")) (VarS "l")))

(NAT (length (map f l))) ∧
Cert env (Call (VarS "length") (VarS "l"))

(NAT (length l))

Follows directly from the certificate theorems for map and length.

36 | CakeML | Ramana Kumar

Certificate theorems compose

Derived rules
` Cert env (Lit (IntLit (toInt n))) (NAT n)
` Cert env e1 ((A→ B) f)⇒

Cert env e2 (A x)⇒ Cert env (Call e1 e2) (B (f x))
` Cert env e1 (BOOL b1)⇒

Cert env e2 (BOOL b2)⇒
Cert env

(If e1 e2
(App (Opb Leq) [Lit (IntLit 0); Lit (IntLit 0)]))

(BOOL (b1 ⇒ b2))
` lookup_var n env = Some v ⇒

A x v ⇒ Cert env (VarS n) (A x)

By composing certificates, we can generate a certified deep
embedding by traversing a shallow term.

37 | CakeML | Ramana Kumar

Proof-producing code generation

That is the idea
From shallow embeddings we can automatically generate certified
deep embeddings.

CakeML code generation features

• Automatic certified code generation.

• Supports recursive functions and datatypes.

• Can generate modular code (ML structures).

• Can generate stateful code (room for improvement).

“Certified implementations from verified algorithms”

38 | CakeML | Ramana Kumar

What we have seen so far

Evaluation problems

Fast simplification within the logic using EVAL.
“Evaluate” HOL terms as if with a functional-program interpreter.

Certified deep embeddings

Automatic generation of a real functional program from a HOL
term, plus... a certificate theorem stating that the CakeML code
correctly implements the HOL term.

Next up

Verified compilation

39 | CakeML | Ramana Kumar

What else can we do with syntax?

Functions on syntax

Within the logic, we have defined semantic functions.

• evaluate, of type
α s → senv → exp list → α s × (v list, v) result

• welltyped, of type
tenv → exp → bool

Another function
How about transforming the syntax? e.g.,

• compile_exp, of type
cs → exp → cs × byte list

(You saw something like this in Assignment 2)

40 | CakeML | Ramana Kumar

Anatomy of a compiler

Compiler definition

Would something like this work
compile_exp cs (Lit (IntLit 2)) = (cs,[184w ; 2w ; 0w ; 0w ; 0w])

?

Does this scale?
No.
What do you do for compile_exp cs (Fun x exp), for example?

Compilation is rather more involved than the semantics.

41 | CakeML | Ramana Kumar

Intermediate languages

Many phases

CakeML compiler backend:

CakeML AST modLang conLang decLang exhLang

patLangclosLangBVLBVIBVPwordLang

stackLang labLang ASM

ARM-64

ARM-32

x86-64MIPS

42 | CakeML | Ramana Kumar

Compiling pattern matching

A small peek
exhLang patLang

compiles case to nested if.

Example
case (C0 1) of C1 => raise C2 | (C0 x) => x

compiles to
let C0 1 in if v0 = C1 then raise C2 else el 0 v0

Or, in the deep embedding

` compile []
(Mat (Con 0 [Lit (IntLit 1)])

[(Pcon 1 [],Raise (Con 2 []));
(Pcon 0 [Pvar "x"],Var "x")]) =

Let (Con 0 [Lit (IntLit 1)])
(If (App (Op Eq) [Vardb 0; Con 1 []])

(Raise (Con 2 [])) (App (El 0) [Vardb 0]))

43 | CakeML | Ramana Kumar

Compiling patterns correctly

Question
What do we need to prove about compile?

Answer
That it preserves semantics: the semantics of the compiled
program is the same as the semantics of the source program.

In more detail
` evaluateexh ck env exh sexh expexh (s ′exh,rexh)⇒

rexh 6= Rerr (Rabort Rtype_error)⇒
sem_rel (env exh,sexh) (envpat,spat)⇒
∃ s ′pat rpat.
evaluatepat ck envpat spat (compile (bvs env exh) expexh)

(s ′pat,rpat) ∧ s_rel s ′exh s ′pat ∧ res_rel rexh rpat

44 | CakeML | Ramana Kumar

Verified compilation

Compiler correctness theorem shape

• If the source program e evaluates in s1 to result r1,

• and if s1 is related to s2,

• then compile e evaluates in s2 to result r2, and r1 is related
to r2.

In a picture

s1 r1

s2 r2

e

Rs

compile e

Rr

Proof idea: induction on source semantics. A natural fit.

45 | CakeML | Ramana Kumar

Verified compilation

Is that enough?

• As a compiler user, we do not want to have to assume the
source program evaluates to a result.

• Rather we want to know that whatever the compiled program
does, that behaviour is permitted by the source semantics.

But which programs might not evaluate?

• Programs that crash...

• Programs that diverge (loop forever)...

• It depends on what style of semantics you use.

46 | CakeML | Ramana Kumar

Functional big-step

Big-step for compiler verification

• Big-step semantics are defined inductively over the syntax.

• Just like the compiler, so there is a natural proof structure.

• Functional big-step is naturally total: crashes are explicit.

The clock enables divergence preservation

• If we prove the compiler preserves timeouts,

• then the compiled code diverges if and only if the source code
diverges.

47 | CakeML | Ramana Kumar

Divergence preservation

Definition (or theorem)

exp diverges iff:
∀ k.
∃ s ′.
evaluate (s with clock := k) env [exp] =

(s ′,Rerr (Rabort Rtimeout))

Consequence

If the compiled code

• times out whenever the source code times out, and,

• converges whenever the source code converges,

then it diverges iff the source code diverges.
(As long as both source and target semantics are deterministic.)

48 | CakeML | Ramana Kumar

Verified compilation for CakeML

So far we briefly saw one small phase of the compiler from abstract
syntax. This is typically called the backend.

Other pieces of a compiler

• Lexing and parsing: from concrete syntax to abstract syntax.

• Type inference: reject ill-typed programs.

The top-level compiler for CakeML has the following type:
cs→ string→ compiler_result

where compiler_result =
ParseError

| TypeError

| Success cs (byte list)

49 | CakeML | Ramana Kumar

Verified compilation for CakeML

Source semantics

• Specified grammar for concrete syntax, and how it maps to
abstract syntax.

• Specified type system for whole programs.

• If a program parses and type checks, then its semantics is one
of:

I Terminate with a value or exception, or,
I Diverge.

• The latest version of CakeML (under development) adds a
trace of I/O events to each of these options.

50 | CakeML | Ramana Kumar

Verified compilation for CakeML

Target semantics

• Instruction semantics for each target machine (x86-64,
ARM-32, etc.).

• Specifies a machine state (memory, registers, etc.), and a
“next state” relation for each instruction.

• Validated (in some cases) by evaluation of the model
compared with execution of real hardware.

51 | CakeML | Ramana Kumar

Verified compilation for CakeML

Correctness theorem

• If the semantics state st and compiler state cs are related
correctly, then consider the result of compile cs prog :

• If ParseError, then prog does not satisfy the grammar.

• If TypeError, then prog is not well typed in st.

• Otherwise, consider all machine states ms in which the
compiled code is loaded correctly. The semantics of running
(repeatedly stepping) ms includes:

I Divergence if prog can diverge in st.
I Termination if prog can terminate in st.
I Termination with a resource error (e.g., out of memory).

• Furthermore the I/O events match up with the semantics.

Shorthand: “compile cs prog implements prog”

52 | CakeML | Ramana Kumar

What we have seen so far

Evaluation problems

Fast simplification within the logic using EVAL.
“Evaluate” HOL terms as if with a functional-program interpreter.

Certified deep embeddings

Automatic generation of a real functional program from a HOL
term, plus... a certificate theorem stating that the CakeML code
correctly implements the HOL term.

Verified compilation

An algorithm turning CakeML code into machine code, plus... a
theorem stating that the semantics of the compiled code is
permitted by the semantics of the source code.

53 | CakeML | Ramana Kumar

Compiler as shallow embedding

Question
How can we run the verified compiler?

Problem?
Recall, the compiler is a function in HOL...

Answer
Running the compiler is an evaluation problem.
We can use EVAL to run the compiler in the logic.

54 | CakeML | Ramana Kumar

Evaluating the compiler

Remember this?
map_suc_dec, pretty-printed:

val it = map (fn x => (x + 1)) (1::2::0::[]);

Example

Input term:
compile_ast cs0 [Tdec map_dec; Tdec map_suc_dec].
Produces:
` compile_ast cs0 [Tdec map_dec; Tdec map_suc_dec] =

Success cs1 map_suc_code
for some cs1 and map_suc_code.

55 | CakeML | Ramana Kumar

Compiler as deep embedding

Question
But how can we run the compiler quicker?

Recall
The compiler is a function in HOL...

Possible answer
Can we use proof-producing code generation?
Yes, to produce CakeML code implementing the compiler.

56 | CakeML | Ramana Kumar

Compiler as deep embedding

Generating code implementing the compiler

What is the deep counterpart of compile?
Some declaration
compile_dec = Dletrec [("compile","cs",Fun "prog" . . .)]

satisfying...

Certificate theorem
` EnvContains compiler_decs env ⇒

Cert env (VarS "compile") ((CS→ STRING→ CR) compile)
compiler_decs includes all the preliminary declarations required
to define the compiler.

But how do we run it?
Now we have the compiler as CakeML code...

57 | CakeML | Ramana Kumar

The perhaps obvious next step

To run CakeML code, first compile it

• Evaluation problem:
compile_ast cs0 [Struct "CakeML" compiler_decs]

• Use EVAL to solve it. (Takes about half an hour.)

• Produces a bootstrapping theorem:
` compile_ast cs0 [Struct "CakeML" compiler_decs] =

Success cs2 compiler_code

To run machine code, print and execute

• At this point we must step out of the logic.

• We assume our machine model (and loader etc.) is correct.

58 | CakeML | Ramana Kumar

Bootstrapping

What we have

1. Correctness theorem:
` ∀ cs prog. compile_ast cs prog implements prog

2. Certificate theorem:
` EnvContains compiler_decs env ⇒

Cert env (VarS "compile") ((CS→ STRING→ CR) compile)

3. Bootstrapping theorem:
` compile_ast cs0 [Struct "CakeML" compiler_decs] =

Success cs2 compiler_code

Put them together

• 1 and 3: ` compiler_code implements compiler_decs.

• plus 2: ` compiler_code implements compile.

59 | CakeML | Ramana Kumar

Compiler verification

Result
We have verified machine code implementing the compiler.

Dimensions of compiler verification

• How far the compiler goes:
string → AST → ILs → · · · → asm → bytes

• Which level of the compiler is verified:
algorithm (shallow), high-level code (deep), machine code

• CakeML covers the full spectrum of both dimensions.

60 | CakeML | Ramana Kumar

A loose end

Alternative to simplification outside the logic

• Can we use the verified compiler to get fast evaluation
without needing to assert axioms?

Yes, but not yet

• Still need to run the machine code outside the logic, and lose
the connection.

• Work in progress: building a verified theorem prover that
includes evaluation by compilation...

61 | CakeML | Ramana Kumar

What we have seen
Evaluation problems

Fast simplification within the logic using EVAL.
“Evaluate” HOL terms as if with a functional-program interpreter.

Certified deep embeddings

Automatic generation of a real functional program from a HOL
term, plus... a certificate theorem stating that the CakeML code
correctly implements the HOL term.

Verified compilation

An algorithm turning CakeML code into machine code, plus... a
theorem stating that the semantics of the compiled code is
permitted by the semantics of the source code.

Bootstrapping

Combining the above to get a verified compiler in machine code.

62 | CakeML | Ramana Kumar

CakeML

People involved

Currently: Anthony Fox (Cambridge), Ramana Kumar (Data61),
Magnus Myreen (Chalmers), Michael Norrish (Data61), Scott
Owens (Kent), Yong Kiam Tan (A*STAR)

Effort
Started in 2012. 3-6 people working on it. Builds on lots of
previous work (mainly HOL4).

CakeML is free software

You can be involved!
https://cakeml.org

63 | CakeML | Ramana Kumar

https://cakeml.org

