CakeML: bootstrapping a verified compiler

Ramana Kumar COMP4161, 20 October 2015

www.data61.csiro.au

DATA

h

Question

What is this function, foo, more often called?

```
foo f[] = []
foo f(h \# t) = f h \# \text{foo } f t
```

Answer

Question

What about this one?

```
bar [] = 0
bar (h \# t) = Suc (bar t)
```

Answer

```
length [] = 0
length (h \# t) = Suc (length t)
```

Note

```
7 = Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0))))))
```

Spot the differences


```
Example 1

map f [] = []

map f (h # t) = f h # map f t
```

Example 2

$$\vdash (\forall f. \operatorname{map} f [] = []) \land \\ \forall f h t. \operatorname{map} f (h \# t) = f h \# \operatorname{map} f t$$

Answer

Example 1 is a pair of equations. Example 2 is a theorem: it has a turnstile, a conjunction, and explicit universal quantification. (But they mean the same thing.)

What you learned last month

Question

Can you prove this?

 $\forall I f. \text{length} (\text{map } f I) = \text{length} I$

Answer

Yes! By induction on the list *I*, simplifying with the definitions of map and length.

But we are interested in even simpler theorems...

Simple theorems

Question

Can you prove this? map length [[]; [[]; []]; [[]]] = [0; 2; 1]

Or this? length (map Suc [1; 2; 0]) = 3

Answer

Simplification...

In fact, you only need the left-hand side of the equation in order to produce the theorem.

Evaluation problems

Definition

An *evaluation problem* is a term that does not contain any variables (only known constants and concrete data). A solution is a theorem $\vdash tm = tm'$, where tm' cannot be simplified further.

Consider the constant while, which satisfies the following equation.

 \vdash while P g x = if P x then while P g (g x) else x

An evaluation problem

What is the solution for this input term? while $(\lambda x. x = 0) (\lambda x. x) 1$

Answer

$$\vdash \text{ while } (\lambda x. x = 0) (\lambda x. x) 1 = 1$$

Example

Another evaluation problem

What about this input term? while $(\lambda x. x = 0) (\lambda x. x) 0$

Answer

...

Simplification loops. There is no solution.

Note

But I thought HOL was a logic of total functions? It is. while is total. We just cannot prove anything interesting about its value on the arguments above.

Evaluation automation

How does simplification work?

Roughly, given a set of rewriting theorems,

- 1. Find a subterm that matches the left-hand side of one of the rewrite theorems.
- 2. Apply primitive proof steps to replace that subterm with the rewrite theorem's right-hand side.
- 3. Repeat until no subterms can be found.

Clearly this procedure can sometimes loop forever.

Proof tools steer the kernel

Kernel as an API for theorems

- Theorem prover kernel provides primitive methods for constructing theorems.
- Tools (like the simplifier) call these methods.
- Therefore, tools do not need to be trusted: only kernel-sanctioned theorems can be produced.

Isabelle and HOL4 support this view ("LCF-style").

Evaluation within the logic

Call-by-value proof automation

- High-performance simplification:
 - Choose a good evaluation strategy.
 - Use techniques from functional programming.
- HOL4 includes such automation (called EVAL). It can be extended with user-defined automation.
- Performance is *fundamentally limited*.
 - At best, simplification is akin to interpreting a program.
 - And, every step ultimately goes through the kernel.

Evaluation outside the logic

Trusted code generation

- Isabelle also offers another method:
 - > Print the input term in a functional programming language.
 - Compile and run the program.
 - Read back the result.
- Faster than EVAL, because the program is compiled and optimised before it is run.
- But, this does not produce a proof.
 - The result theorem needs to be asserted as an axiom.
 - Much care is required to ensure this axiom is plausible.

We will return to this later.

Counting steps

Question

Can you count the number of reductions (applications of a single rewrite rule) taken in solving an evaluation problem?

Answer

Yes: augment the simplifier so it counts how many rewrites it applies, and returns the count alongside the theorem.

Example

Simplify and count: while $(\lambda x. x < 2)$ Suc 0. returns: (\vdash while $(\lambda x. x < 2)$ Suc 0 = 2, 2 rewrites) (Actually: 216 primitive inference steps.)

Counting steps inside the logic

Question

How about reasoning about the number of steps?

Problem

The simplifier is outside the logic, just using the kernel API. Inside the logic, the number of steps is completely invisible.

Totally different approach

Formalise simplification within the logic. Use a deep embedding.

Deep embeddings

Question

What might this datatype be used for?

```
lit = IntLit int | Char char | StrLit string | Word8 byte
```

Answer

```
exp =
Lit lit
Var (string id)
Con (string id option) (exp list)
Fun string exp
App op (exp list)
If exp exp exp
Raise exp
Handle exp ((pat × exp) list)
...
```

Functional semantics

Some meanings

evaluate st env [Lit /] = (st,Rval [Litv /]) evaluate st env [Fun $\times e$] = (st,Rval [Closure env $\times e$]) evaluate st env [Var n] = case lookup_var_id n env of None \Rightarrow (st,Rerr (Rabort Rtype_error)) | Some $\nu \Rightarrow$ (st,Rval [v])

Pulling apart closures

do_call [Closure env n e;
$$v_2$$
] =
Some (env with $v := (n, v_2) \# env.v, e$)
do_call [Litv /; v_2] = None

. . .

Functional semantics has a clock

Function applications tick

```
evaluate st env [Call e_1 e_2] =
  case evaluate st env [e_1; e_2] of
    (st', Rval vs) \Rightarrow
     (case do_call (reverse vs) of
       None \Rightarrow (st', Rerr (Rabort Rtype_error))
      | Some (env', e) \Rightarrow
         if st'.clock = 0 then
          (st', Rerr (Rabort Rtimeout_error))
         else
          evaluate (st' with clock := st'.clock - 1) env' [e])
  |(st', \text{Rerr}_) \Rightarrow (st', \text{Rerr}_)|
The clock lets us prove termination for evaluate.
```

CakeML

Language features

- functions: higher-order, polymorphic, mutually recursive
 fn x => if x then "hi" else "bye";
 let
 fun f 0 = true | f n = g (n-1)
 fun g n = n = 1 orelse f (n-1)
 in f end
- datatypes: recursive, pattern-matching
- state (references), exceptions, modules

A real programming language. But many similarities to HOL.

Interlude: ML

What is ML?

- A family of programming languages, including Standard ML and OCaml (and CakeML), developed by Milner and others in the 70s.
- Many theorem provers are written in ML, including Isabelle and HOL4.
- Stands for "meta-language", because its original use was implementing LCF theorem prover, which has an "object language", namely, the logic.

Nowadays a general programming language, and used in industry.

Characteristics

Functional, strict, impure, type safe, modular.

Deep map

```
Remember this?

map f [] = []

map f (h \# t) = f h \# map f t
```

Compare

```
Dletrec

[("map","v3",

Fun "v4"

(Mat (VarS "v4")

[(PconS "nil" [],ConS "nil" []);

(PconS "::" [Pvar "v2"; Pvar "v1"],

ConS "::"

[Call (VarS "v3") (VarS "v2");

Call (Call (VarS "map") (VarS "v3")) (VarS "v1")])]))]
```


Deep map, pretty-printed

Easier to read in concrete syntax

Let us name this deeply-embedded declaration map_dec.

Proofs about deep embeddings

Another declaration

val it = map (fn x => (x + 1)) (1::2::0::[]); Call this map_suc_dec.

Clock bound

As promised, we can now reason about the number of steps.

 $\label{eq:linear_line$

How hard was this to prove?

Using EVAL the proof is short, but takes many seconds to run.

More general proofs

Deep embeddings let us reason about the semantics in general.

Type safety

- We can define a type system over deeply-embedded syntax.
- We can prove that well-typed programs never crash (they only diverge or terminate with a value or un-handled exception).

Alternative semantics

- You may have seen relational big-step semantics, as well as small-step operational semantics.
- We can prove equivalences between different versions of the semantics, and obtain a solid understanding of our language.

Deep proofs are hard

Remember this?

 $\vdash \forall I f. \text{ length } (\text{map } f I) = \text{ length } I$

How do we prove it about the deep embedding?

Induct, simp?

Nope: the deep embedding gets in the way. It is possible, but much more cumbersome. But can we get it automatically from the shallow proof?

(You may have seen a similar thing before, e.g., Autocorres.)

Connecting shallow to deep

Question

What is the deep counterpart of this term? Suc (Suc (Suc 0))

Answer

Litv (IntLit (toInt (Suc (Suc (Suc 0))))) (of type v, rather than nat)

Connecting shallow to deep

Question

```
How about the unit value? ()
```

Answer

Conv None []

Refinement invariants

We can characterise these relationships:

INT $i v \iff v = \text{Litv}(\text{IntLit } i)$ NAT $n v \iff \text{INT}(\text{toInt } n) v$ UNIT $u v \iff v = \text{Conv None}[]$

Shallow to deep datatypes

Question

What is the deep counterpart of this term? [0; 2; 1]

Answer

```
ConvS "list" "::"
[Litv (IntLit 0);
ConvS "list" "::"
[Litv (IntLit 1);
ConvS "list" "::" [Litv (IntLit 2); ConvS "list" "nil" []]]]
```

Refinement invariant

```
LIST A ls v means v relates to ls, if A relates the elements.

LIST A [] v \iff v = ConvS "list" "nil" []

LIST A (h # t) v \iff

\exists v_1 v_2. v = ConvS "list" "::" [v_1; v_2] \land A h v_1 \land LIST A t v_2
```

Connecting shallow to deep

Question

What is the deep counterpart of this term? $\lambda x \cdot x + x$

Answer

Closure *env* "x" (App (Opn Plus) [VarS "x"; VarS "x"]) There are many answers, for many *envs*. (Not to mention the many equivalent expressions.)

Refinement invariant

How can we characterise this relationship?

Shallow to deep functions

Refinement invariant

(NAT \rightarrow NAT) f v means: v is a closure implementing the function f(which should be of type nat \rightarrow nat, in this case)

Definition

$$\begin{array}{l} (A \rightarrow B) \ f \ v \iff \\ \forall x \ v_1. \\ A \ x \ v_1 \Rightarrow \\ \exists \ v_2 \ env \ exp \ k. \\ (do_call \ [v; \ v_1] = Some \ (env, exp) \land \\ evaluate \ (st_0 \ with \ clock \ := \ k) \ env \ [exp] = \\ (st_0, Rval \ [v_2])) \land B \ (f \ x) \ v_2 \end{array}$$

Shallow to deep map

Question

What is the deep counterpart of this term? map

Answer

Some closure, satisfying this refinement invariant: $((A \rightarrow B) \rightarrow \text{LIST } A \rightarrow \text{LIST } B)$ map

Is that enough?

Yes, only closures that behave like map satisfy this invariant.

Shallow to deep expressions

Question

What is the deep counterpart of this term? $(\lambda x. x + x) 3$

Trick question

That term does not correspond to a value (it can be simplified).

Answer

The deep counterpart is an expression, not a value: Call (Fun "x" (App (Opn Plus) [VarS "x"; VarS "x"])) (Lit (IntLit 3))

Shallow to deep expressions

Correctness

What constitutes correspondence between shallow and deep? Why is this

```
(\lambda x. x + x) 3
refined by this
Call (Fun "x" (App (Opn Plus) [VarS "x"; VarS "x"]))
  (Lit (IntLit 3))
?
```

Answer

The semantics justifies the connection.

 $\vdash \exists k res.$

evaluate (st₀ with clock := k) env
[Call (Fun "x" (App (Opn Plus) [VarS "x"; VarS "x"]))
 (Lit (IntLit 3))] =
 (st₀,Rval [res]) ∧ NAT ((λx. x + x) 3) res

Certificate theorems

Definition

A *certificate theorem* for deep embedding exp and refinement invariant A states:

 $\exists k res.$

evaluate (st₀ with clock := k) env [exp] = (st₀, Rval [res]) \land

A res

We abbreviate this by Cert env exp A.

Example

⊢ Cert env (ConS "::" [Con None []; ConS "nil" []]) (LIST UNIT [()])

Certificate theorem for map

Question

What is the deep counterpart of map, considered as an expression?

Answer

Just a variable: VarS "map".

But it is only correct in the right environment:

 \vdash EnvContains [map_dec] $env \Rightarrow$

Cert env (VarS "map") (($(a \rightarrow b) \rightarrow \text{LIST} a \rightarrow \text{LIST} b$) map) Now, how can we use this certificate theorem?

Deep results for shallow proofs

Remember this?

 $\vdash \texttt{ length (map } f \ l) \texttt{ = length } l$

The deep version

Follows directly from the certificate theorems for map and length.

Certificate theorems compose

Derived rules

 \vdash Cert env (Lit (IntLit (toInt n))) (NAT n)

$$\vdash \text{ Cert env } e_1 ((A \rightarrow B) f) \Rightarrow \\ \text{ Cert env } e_2 (A x) \Rightarrow \text{ Cert env } (\text{Call } e_1 e_2) (B (f x)) \\ \vdash \text{ Cert env } e_1 (\text{BOOL } b_1) \Rightarrow \\ \text{ Cert env } e_2 (\text{BOOL } b_2) \Rightarrow \\ \text{ Cert env } \\ (\text{ If } e_1 e_2 \\ (\text{ App (Opb Leq) [Lit (IntLit 0); Lit (IntLit 0)]))} \\ (\text{ BOOL } (b_1 \Rightarrow b_2)) \\ \vdash \text{ lookup_var } n \text{ env = Some } v \Rightarrow \\ A x v \Rightarrow \text{ Cert env (VarS } n) (A x) \end{cases}$$

By composing certificates, we can generate a certified deep embedding by traversing a shallow term.

Proof-producing code generation

That is the idea

From shallow embeddings we can *automatically* generate *certified* deep embeddings.

CakeML code generation features

- Automatic certified code generation.
- Supports recursive functions and datatypes.
- Can generate modular code (ML structures).
- Can generate stateful code (room for improvement).

"Certified implementations from verified algorithms"

What we have seen so far

Evaluation problems

Fast simplification within the logic using EVAL. "Evaluate" HOL terms as if with a functional-program interpreter.

Certified deep embeddings

Automatic generation of a *real* functional program from a HOL term, *plus*... a certificate theorem stating that the CakeML code correctly implements the HOL term.

Next up

Verified compilation

What else can we do with syntax?

Functions on syntax

Within the logic, we have defined semantic functions.

• evaluate, of type

 α s \rightarrow senv \rightarrow explist $\rightarrow \alpha$ s \times (v list, v) result

• welltyped, of type tenv \rightarrow exp \rightarrow bool

Another function

How about transforming the syntax? e.g.,

(You saw something like this in Assignment 2)

Anatomy of a compiler

Compiler definition

Would something like this work
compile_exp cs (Lit (IntLit 2)) = (cs,[184w; 2w; 0w; 0w; 0w])
?

Does this scale?

No.

What do you do for compile_exp cs (Fun x exp), for example?

Compilation is rather more involved than the semantics.

Intermediate languages

Many phases

CakeML compiler backend:

Compiling pattern matching

A small peek exhLang patLang compiles case to nested if.

Example

```
case (C0 1) of C1 => raise C2 | (C0 x) => x
  compiles to
```

let CO 1 in if vO = C1 then raise C2 else el O vO

Or, in the deep embedding

Compiling patterns correctly

Question

What do we need to prove about compile?

Answer

That it preserves semantics: the semantics of the compiled program is the same as the semantics of the source program.

In more detail

$$\begin{split} \vdash & \texttt{evaluate}_{\texttt{exh}} \ ck \ env_{\texttt{exh}} \ s_{\texttt{exh}} \ exp_{\texttt{exh}} \ (s'_{\texttt{exh}}, r_{\texttt{exh}}) \Rightarrow \\ & r_{\texttt{exh}} \neq \texttt{Rerr} \ (\texttt{Rabort} \ \texttt{Rtype}_\texttt{error}) \Rightarrow \\ & \texttt{sem_rel} \ (env_{\texttt{exh}}, s_{\texttt{exh}}) \ (env_{\texttt{pat}}, s_{\texttt{pat}}) \Rightarrow \\ & \exists \ s'_{\texttt{pat}} \ r_{\texttt{pat}}. \\ & \texttt{evaluate}_{\texttt{pat}} \ ck \ env_{\texttt{pat}} \ s_{\texttt{pat}} \ (\texttt{compile} \ (\texttt{bvs} \ env_{\texttt{exh}}) \ exp_{\texttt{exh}}) \\ & (s'_{\texttt{pat}}, r_{\texttt{pat}}) \land \texttt{s_rel} \ s'_{\texttt{pat}} \land \texttt{res_rel} \ r_{\texttt{exh}} \ r_{\texttt{pat}} \end{split}$$

Verified compilation

Compiler correctness theorem shape

- If the source program e evaluates in s_1 to result r_1 ,
- and if s₁ is related to s₂,
- then compile *e* evaluates in *s*₂ to result *r*₂, and *r*₁ is related to *r*₂.

In a picture

Proof idea: induction on source semantics. A natural fit.

Verified compilation

Is that enough?

- As a compiler user, we do not want to have to assume the source program evaluates to a result.
- Rather we want to know that *whatever the compiled program does*, that behaviour is permitted by the source semantics.

But which programs might not evaluate?

- Programs that crash...
- Programs that diverge (loop forever)...
- It depends on what style of semantics you use.

Functional big-step

Big-step for compiler verification

- Big-step semantics are defined inductively over the syntax.
- Just like the compiler, so there is a natural proof structure.
- Functional big-step is naturally total: crashes are explicit.

The clock enables divergence preservation

- If we prove the compiler preserves timeouts,
- then the compiled code diverges if and only if the source code diverges.

Divergence preservation

Definition (or theorem)

exp diverges iff:

```
∀ k.
∃ s'.
evaluate (s with clock := k) env [exp] =
  (s', Rerr (Rabort Rtimeout))
```

Consequence

If the compiled code

- times out whenever the source code times out, and,
- converges whenever the source code converges,

then it diverges iff the source code diverges.

(As long as both source and target semantics are *deterministic*.)

So far we briefly saw one small phase of the compiler from abstract syntax. This is typically called the *backend*.

Other pieces of a compiler

- Lexing and parsing: from concrete syntax to abstract syntax.
- Type inference: reject ill-typed programs.

```
The top-level compiler for CakeML has the following type:
cs → string → compiler_result
where compiler_result =
    ParseError
    | TypeError
    | Success cs (byte list)
```

Source semantics

- Specified grammar for concrete syntax, and how it maps to abstract syntax.
- Specified type system for whole programs.
- If a program parses and type checks, then its semantics is one of:
 - Terminate with a value or exception, or,
 - Diverge.
- The latest version of CakeML (under development) adds a trace of I/O events to each of these options.

Target semantics

- Instruction semantics for each target machine (x86-64, ARM-32, etc.).
- Specifies a machine state (memory, registers, etc.), and a "next state" relation for each instruction.
- Validated (in some cases) by evaluation of the model compared with execution of real hardware.

DATA 61

Correctness theorem

- If the semantics state *st* and compiler state *cs* are related correctly, then consider the result of compile *cs prog*:
- If ParseError, then *prog* does not satisfy the grammar.
- If TypeError, then prog is not well typed in st.
- Otherwise, consider all machine states *ms* in which the compiled code is loaded correctly. The semantics of running (repeatedly stepping) *ms* includes:
 - Divergence if *prog* can diverge in *st*.
 - Termination if *prog* can terminate in *st*.
 - Termination with a resource error (e.g., out of memory).
- Furthermore the I/O events match up with the semantics.

Shorthand: "compile cs prog implements prog"

What we have seen so far

Evaluation problems

Fast simplification within the logic using EVAL. "Evaluate" HOL terms as if with a functional-program interpreter.

Certified deep embeddings

Automatic generation of a *real* functional program from a HOL term, *plus...* a certificate theorem stating that the CakeML code correctly implements the HOL term.

Verified compilation

An algorithm turning CakeML code into machine code, *plus...* a theorem stating that the semantics of the compiled code is permitted by the semantics of the source code.

Compiler as shallow embedding

Question

How can we run the verified compiler?

Problem?

Recall, the compiler is a function in HOL ...

Answer

Running the compiler is an *evaluation problem*. We can use EVAL to run the compiler in the logic.

Evaluating the compiler

Remember this?

```
map_suc_dec, pretty-printed:
val it = map (fn x => (x + 1)) (1::2::0::[]);
```

Example

Input term:

compile_ast cs₀ [Tdec map_dec; Tdec map_suc_dec].
Produces:

compile_ast cs₀ [Tdec map_dec; Tdec map_suc_dec] =
 Success cs₁ map_suc_code
for some cs₁ and map_suc_code.

Compiler as deep embedding

Question

But how can we run the compiler quicker?

Recall

The compiler is a function in HOL...

Possible answer

Can we use proof-producing code generation? Yes, to produce CakeML code implementing the compiler.

Compiler as deep embedding

Generating code implementing the compiler

What is the deep counterpart of compile? Some declaration

compile_dec = Dletrec [("compile","cs",Fun "prog" ...)]
satisfying...

Certificate theorem

 \vdash EnvContains compiler_decs *env* \Rightarrow

Cert env (VarS "compile") ((CS \rightarrow STRING \rightarrow CR) compile) compiler_decs includes all the preliminary declarations required to define the compiler.

But how do we run it?

Now we have the compiler as CakeML code...

The perhaps obvious next step

To run CakeML code, first compile it

• Evaluation problem:

compile_ast cs0 [Struct "CakeML" compiler_decs]

- Use EVAL to solve it. (Takes about half an hour.)
- Produces a *bootstrapping theorem*:
 - compile_ast cs₀ [Struct "CakeML" compiler_decs] =
 Success cs₂ compiler_code

To run machine code, print and execute

- At this point we must step out of the logic.
- We assume our machine model (and loader etc.) is correct.

Bootstrapping

What we have

1. Correctness theorem:

 $\vdash \forall \mathit{cs prog}. \ \texttt{compile}_\texttt{ast} \mathit{cs prog} \ \texttt{implements} \ \mathit{prog}$

- 2. Certificate theorem:
 - $\vdash \texttt{EnvContains compiler_decs } env \Rightarrow \\ \texttt{Cert } env \text{ (VarS "compile") ((CS \rightarrow \texttt{STRING} \rightarrow \texttt{CR}) compile)}$
- 3. Bootstrapping theorem:
 - compile_ast cs₀ [Struct "CakeML" compiler_decs] =
 Success cs₂ compiler_code

Put them together

- 1 and 3: ⊢ compiler_code implements compiler_decs.
- plus 2: ⊢ compiler_code implements compile.

Compiler verification

Result

We have verified machine code implementing the compiler.

Dimensions of compiler verification

- How far the compiler goes: string \rightarrow AST \rightarrow ILs $\rightarrow \cdots \rightarrow$ asm \rightarrow bytes
- Which level of the compiler is verified: algorithm (shallow), high-level code (deep), machine code
- CakeML covers the full spectrum of both dimensions.

A loose end

Alternative to simplification outside the logic

• Can we use the verified compiler to get *fast* evaluation without needing to assert axioms?

Yes, but not yet

- Still need to run the machine code outside the logic, and lose the connection.
- Work in progress: building a verified theorem prover that includes evaluation by compilation...

What we have seen

Evaluation problems

Fast simplification within the logic using EVAL. "Evaluate" HOL terms as if with a functional-program interpreter.

Certified deep embeddings

Automatic generation of a *real* functional program from a HOL term, *plus*... a certificate theorem stating that the CakeML code correctly implements the HOL term.

Verified compilation

An algorithm turning CakeML code into machine code, *plus...* a theorem stating that the semantics of the compiled code is permitted by the semantics of the source code.

Bootstrapping

Combining the above to get a verified compiler in machine code.

CakeML

People involved

Currently: Anthony Fox (Cambridge), Ramana Kumar (Data61), Magnus Myreen (Chalmers), Michael Norrish (Data61), Scott Owens (Kent), Yong Kiam Tan (A*STAR)

Effort

Started in 2012. 3-6 people working on it. Builds on lots of previous work (mainly HOL4).

CakeML is free software

You can be involved! https://cakeml.org