

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

more Isar

Slide 1

Contont	
Content	NICTA
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3 ^a]
Term rewriting	[4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	[6, 7]
 Hoare logic, proofs about programs, C verification 	$[8^b, 9]$
(mid-semester break)	
 Writing Automated Proof Methods 	[10]
 Isar, codegen, typeclasses, locales 	[11c,12]

Slide 2

Last time ... Isar!

- → syntax: proof, qed, assume, from, show, have, next
- → modes: prove, state, chain
- → backward/forward reasoning
- → fix, obtain
- → abbreviations: this, then, thus, hence, with, ?thesis
- → moreover, ultimately
- → case distinction

Slide 3

Today

- → Datatypes in Isar
- → Calculational reasoning

DATATYPES IN ISAR

Slide 5

```
Datatype case distinction NICTA

proof (cases term)
    case Constructor<sub>1</sub>
    :
    next
:
    next
    case (Constructor<sub>k</sub> \vec{x})
    ··· \vec{x} ···

qed

case (Constructor<sub>i</sub> \vec{x}) \equiv
    fix \vec{x} assume Constructor<sub>i</sub> : "term = Constructor<sub>i</sub> \vec{x}"
```

Slide 6

Structural induction for type nat


```
\begin{array}{lll} \mathbf{show} \ P \ n \\ & \mathbf{proof} \ (\mathsf{induct} \ n) \\ & \mathbf{case} \ 0 \\ & \cdots \\ & \mathbf{show} \ ?case \\ & \mathbf{next} \\ & \mathbf{case} \ (\mathsf{Suc} \ n) \\ & \cdots \\ & \mathbf{n} \\ & \cdots \\ & \mathbf{show} \ ?case \\ & \mathbf{let} \ ?case = P \ (\mathsf{Suc} \ n) \\ & \cdots \\ & \mathbf{n} \\ & \cdots \\ & \mathbf{show} \ ?case \\ & \mathbf{qed} \end{array}
```

Slide 7

Structural induction with \Longrightarrow and \land


```
NICTA
```

Slide 8

yright NICTA 2014, provided under Creative Commons Attribution License

3 Capyright NICTA 2014, provided under Creative Commons Attribution License

DEMO: DATATYPES IN ISAR

Slide 9

CALCULATIONAL REASONING

Slide 10

The Goal

Prove:

$$x \cdot x^{-1} = 1$$
 using: assoc: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

 $\begin{array}{ll} \text{left_inv:} & x^{-1} \cdot x = 1 \\ \\ \text{left_one:} & 1 \cdot x = x \end{array}$

Slide 11

The Goal

NICTA

Prove:

Can we do this in Isabelle?

- → Simplifier: too eager
- → Manual: difficult in apply style
- → Isar: with the methods we know, too verbose

Slide 12

5

Chains of equations

The Problem

$$a = b$$
 $\dots = c$
 $\dots = d$

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

Solution in Isar:

- → Keywords also and finally to delimit steps
- → ...: predefined schematic term variable, refers to right hand side of last expression
- → Automatic use of transitivity rules to connect steps

Slide 13

also/finally

have " $t_0=t_1$ " [proof]	calculation register
at a constant of the constant	" "

also $"t_0 = t_1"$ have " $\dots = t_2$ " [proof]

also " $t_0=t_2$ "

also $"t_0 = t_{n-1}"$ have $"\cdots = t_n"$ [proof]

finally $t_0 = t_n$

show P

— 'finally' pipes fact " $t_0 = t_n$ " into the proof

Slide 14

More about also

- → Works for all combinations of =, < and <.
- → Uses all rules declared as [trans].
- → To view all combinations: print_trans_rules

Slide 15

Designing [trans] Rules

$$\label{eq:lambda} \begin{split} & \mathbf{have} = "l_1 \odot r_1" \, [\mathsf{proof}] \\ & \mathbf{also} \\ & \mathbf{have} \; ". \ldots \odot r_2" \, [\mathsf{proof}] \\ & \mathbf{also} \end{split}$$

Anatomy of a [trans] rule:

- \rightarrow Usual form: plain transitivity $[l_1 \odot r_1; r_1 \odot r_2] \Longrightarrow l_1 \odot r_2$
- ightharpoonup More general form: $\llbracket P\ l_1\ r_1; Q\ r_1\ r_2; A
 rbracket \Longrightarrow C\ l_1\ r_2$

Examples:

- ightharpoonup pure transitivity: $[a=b;b=c] \Longrightarrow a=c$
- \rightarrow mixed: $[a \le b; b < c] \Longrightarrow a < c$
- \rightarrow substitution: $\llbracket P \ a; a = b \rrbracket \Longrightarrow P \ b$
- \rightarrow antisymmetry: $[a < b; b < a] \Longrightarrow P$
- igoplus monotonicity: $[\![a=f\;b;b< c; \bigwedge x\;y.\;x< y\Longrightarrow f\;x< f\;y]\!]\Longrightarrow a< f\;c$

CODE GENERATION

Slide 18

HOL as programming language

We have

- → numbers, arithmetic
- → recursive datatypes
- → constant definitions, recursive functions
- → = a functional programming language
- → can be used to get fully verified programs

Executed using the simplifier. But:

- → slow, heavy-weight
- → does not run stand-alone (without Isabelle)

Slide 19

Generating code

Translate HOL functional programming concepts, i.e.

- → datatypes
- → function definitions
- → inductive predicates

into a stand-alone code in:

- → SML
- → Ocaml
- → Haskell
- → Scala

Syntax		Program Refinement	•
export_code <definition_names> in SML</definition_names>	NICTA	Aim: choosing appropriate code equations explicitly	NICTA
module_name <module_name> file "<file path="">"</file></module_name>		Syntax:	
export_code <definition_names> in Haskell module_name <module_name> file "<directory path=""></directory></module_name></definition_names>	,,	lemma [code]: < of equations on function_name>	
Takes a space-separated list of constants for which code sh	all be generated.	Example: more efficient definition of fibonnacci function	
Anything else needed for those is added implicitly. Generate	es ML stucture.		
Slide 21		Slide 23	©•
D ЕМО	NICTA	DEMO	- NICTA

Slide 24

Inductive Predicates

Inductive specifications turned into equational ones

Example:

```
append [] ys ys  \text{append xs ys zs} \Longrightarrow \text{append (x \# xs ) ys (x \# zs )}
```

Syntax:

code_pred append .

Slide 25

DEMO

Slide 26

We have seen today ...

- → Datatypes in Isar
- → Calculations: also/finally
- → [trans]-rules
- → Code generation

Slide 27

A 2014, provided under Creative Commons Attribution License 13