e Oe

Last time ... Isar!
NICTA NICTA

syntax: proof, ged, assume, from, show, have, next
modes: prove, state, chain

backward/forward reasoning

fix, obtain

abbreviations: this, then, thus, hence, with, ?thesis
moreover, ultimately

case distinction

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

R R R A AR 2

Toby Murray, June Andronick, Gerwin Klein

more Isar

Slide 1 Slide 3

e Oe

Content Today
NICTA NICTA

=» Intro & motivation, getting started 1] =» Datatypes in Isar

- L =» Calculational reasoning
=» Foundations & Principles

e Lambda Calculus, natural deduction [1,2]
o Higher Order Logic [39]
o Term rewriting [4]

=» Proof & Specification Techniques

e Inductively defined sets, rule induction [5]
e Datatypes, recursion, induction [6,7]
e Hoare logic, proofs about programs, C verification [8%,9]
e (mid-semester break)

e Writing Automated Proof Methods [10]
e lsar, codegen, typecl locales [11¢,12]

“al due; “a2 due; “a3 due

Slide 2 Slide 4



Qe

NICTA

DATATYPES IN ISAR

Slide 5

Qe

Datatype case distinction

NICTA

proof (cases term)
case Constructor;

next
next

case (Constructory, )

ST e

qed

case (Constructor; 7)

-

fix & assume Constructor; : "term = Constructor; &

Slide 6

Qe

Structural induction for type nat
NICTA

show P n
proof (induct n)
case 0 = let7case=P0

show ?case
next
case (Suc n) = fix n assume Suc: P n
let ?case = P (Suc n)

e
show ?case

qed

Slide 7

Qe

Structural induction with = and A
NICTA

show "Az. An= Pn”

proof (induct n)
case 0 = fix z assume 0: "A 0"
. let ?case ="P 0"
show ?case

next
case (Suc n) = fixnandz
. assume Suc: "Az. An= Pn’
B "A (Sucn)”
.. let ?case =P (Sucn)”
show ?case
qed

Slide 8



Oe

NICTA

DEMO: DATATYPES IN ISAR

Slide 9

Oe

NICTA

CALCULATIONAL REASONING

Slide 10

Oe

The Goal
NICTA
Prove:
o l=1 using: assoc: (xy)-z=x-(y 2)
leftinv: z'.2z=1
leftone: 1-z=z
Slide 11
e
The Goal
NICTA
Prove:
zoz =1 (z -2 using: assoc: (z-y)-z=x-(y-z)
=1l-z-27! leftinv: 2 l.z=1
(R leftone: 1.-z=2z
=@ ) (@) 2t
— (])_1)_1 .1 'fI)_l
=@ )
(z=)~L. g~
=1

Can we do this in Isabelle?
=» Simplifier: too eager
=» Manual: difficult in apply style
=» Isar: with the methods we know, too verbose

Slide 12



e

Chains of equations
NICTA

The Problem

a = b
(&
d

shows a = d by transitivity of =
Each step usually nontrivial (requires own subproof)

Solution in Isar:
=» Keywords also and finally to delimit steps
=» ...: predefined schematic term variable,
refers to right hand side of last expression
=» Automatic use of transitivity rules to connect steps

Slide 13
e
alsoffinally

NICTA
have "ty = t;” [proof] calculation register
also "to = t1”
have ”... =" [proof]
also "to = t3”
also "to = th-1"
have ”--- =t,” [proof]
finally to =1n
show P

— ‘finally’ pipes fact "t, = ¢,,” into the proof

Slide 14

e

More about also

NICTA

=» Works for all combinations of =, < and <.
=» Uses all rules declared as [trans].

=» To view all combinations: print_trans_rules

Slide 15

e

Designing [trans] Rules

NICTA
have =", ® r,” [proof]
also
have "... ® ry” [proof]
also

Anatomy of a [trans] rule:
=» Usual form: plain transitivity [I1 © ri;r1 @ r2] = 11 © 12
=» More general form: [Pl r1;Q r1 r2; Al = C li r2

Examples:

=» pure transitivity: [a =b;b=c] = a=c¢
- mixed: [a <bjb<c]=a<c

=» substitution: [P a;a =b] = Pb

=» antisymmetry: [a < b;b < a] = P

= monotonicity: [a = fhib<cAzy.z<y= fz<fyl=a< fc

Slide 16



e

NICTA

DEmMoO

Slide 17

e

NICTA

CODE GENERATION

Slide 18

e

HOL as programming language
Bres s duag NICTA

We have

=» numbers, arithmetic
=¥ recursive datatypes

=» constant definitions, recursive functions

=» = afunctional programming language

=» can be used to get fully verified programs
Executed using the simplifier. But:

<> slow, heavy-weight

=» does not run stand-alone (without Isabelle)

Slide 19

e

Generating code
NICTA

Translate HOL functional programming concepts, i.e.
=» datatypes

=» function definitions

=» inductive predicates

into a stand-alone code in:
-» SML

=» Ocaml

=» Haskell

-» Scala

Slide 20



e

Syntax
NICTA

export_code <definition_.names> in SML
module_name <module_name> file “<file path>"

export_code <definition_.names> in Haskell
module_name <module_name> file “<directory path>"

Takes a space-separated list of constants for which code shall be generated.

Anything else needed for those is added implicitly. Generates ML stucture.

Slide 21
e
NICTA

DEMO

Slide 22

e

Program Refinement
NICTA

Aim: choosing appropriate code equations explicitly
Syntax:

lemma [code]:
<list of equations on function_name>

Example: more efficient definition of fibonnacci function

Slide 23
e
NICTA

DEMO

Slide 24



e

NICTA

Inductive Predicates

Inductive specifications turned into equational ones

Example:

append [] ys ys

append xs ys zs = append (x # xs ) ys (x # zs )
Syntax:
code_pred append .

Slide 25
e
NICTA

DEmO

Slide 26

We have seen today ...

=» Datatypes in Isar

=» Calculations: also/finally
=» [trans]-rules

=» Code generation

Slide 27

14

e

NICTA



