
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

Isar
Slide 1

Content

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6, 7]

• Hoare logic, proofs about programs, C verification [8b,9]

• (mid-semester break)

• Writing Automated Proof Methods [10]

• Isar, codegen, typeclasses, locales [11c,12]
aa1 due; ba2 due; ca3 due

Slide 2

Copyright NICTA 2014, provided under Creative Commons Attribution License 1

ISAR

A L ANGUAGE FOR STRUCTURED PROOFS

Slide 3

Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?

Slide 4

Copyright NICTA 2014, provided under Creative Commons Attribution License 2

Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?

YES!

apply (rule iffI)

apply (cases A)

apply (rule disjI1)

apply (erule impE)

apply assumption

apply assumption

apply (rule disjI2)

apply assumption

apply (rule impI)

apply (erule disjE)

apply assumption

apply (erule notE)

apply assumption

done

or by blast

OK it’s true. But WHY?

Slide 5

Motivation

WHY is this true: (A −→ B) = (B ∨ ¬A) ?

Demo

Slide 6

Copyright NICTA 2014, provided under Creative Commons Attribution License 3

Isar

apply scripts What about..

➜ unreadable ➜ Elegance?

➜ hard to maintain ➜ Explaining deeper insights?

➜ do not scale ➜ Large developments?

No structure. Isar!

Slide 7

A typical Isar proof

proof

assume formula0

have formula1 by simp
...

have formulan by blast

show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

(analogous to assumes /shows in lemma statements)

Slide 8

Copyright NICTA 2014, provided under Creative Commons Attribution License 4

Isar core syntax

proof = proof [method] statement∗ qed

| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (
∧

)

| assume proposition (=⇒)

| [from name+] (have | show) proposition proof

| next (separates subgoals)

proposition = [name:] formula

Slide 9

proof and qed

proof [method] statement∗ qed

lemma ”[[A;B]] =⇒ A ∧B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal

➜ proof applies a single rule that fits

➜ proof - does nothing to the goal

Slide 10

Copyright NICTA 2014, provided under Creative Commons Attribution License 5

How do I know what to Assume and Show?

Look at the proof state!

lemma ”[[A;B]] =⇒ A ∧B”
proof (rule conjI)

➜ proof (rule conjI) changes proof state to

1. [[A;B]] =⇒ A

2. [[A;B]] =⇒ B

➜ so we need 2 shows: show ”A” and show ”B”

➜ We are allowed to assume A,

because A is in the assumptions of the proof state.

Slide 11

The Three Modes of Isar

➜ [prove] :

goal has been stated, proof needs to follow.

➜ [state] :
proof block has openend or subgoal has been proved,

new from statement, goal statement or assumptions can follow.

➜ [chain] :

from statement has been made, goal statement needs to follow.

lemma ”[[A;B]] =⇒ A ∧B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

Slide 12

Copyright NICTA 2014, provided under Creative Commons Attribution License 6

Have

Can be used to make intermediate steps.

Example:

lemma ”(x :: nat) + 1 = 1 + x”

proof -

have A: ”x+ 1 = Suc x” by simp

have B: ”1 + x = Suc x” by simp

show ”x+ 1 = 1 + x” by (simp only: A B)

qed

Slide 13

DEMO

Slide 14

Copyright NICTA 2014, provided under Creative Commons Attribution License 7

Backward and Forward

Backward reasoning: . . . have ”A ∧B” proof
➜ proof picks an intro rule automatically

➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .

assume AB: ”A ∧B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically

➜ triggered by from
➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof
➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

Slide 15

Fix and Obtain

fix v1 . . . vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

obtain v1 . . . vn where <prop> <proof>

Introduces new variables together with property

Slide 16

Copyright NICTA 2014, provided under Creative Commons Attribution License 8

DEMO

Slide 17

Fancy Abbreviations

this = the previous fact proved or assumed

then = from this

thus = then show

hence = then have

with A1 . . . An = from A1 . . . An this

?thesis = the last enclosing goal statement

Slide 18

Copyright NICTA 2014, provided under Creative Commons Attribution License 9

Moreover and Ultimately

have X1: P1 . . . have P1 . . .

have X2: P2 . . . moreover have P2 . . .
...

...

have Xn: Pn . . . moreover have Pn . . .

from X1 . . .Xn show . . . ultimately show . . .

wastes lots of brain power

on names X1 . . .Xn

Slide 19

General Case Distinctions

show formula

proof -

have P1 ∨ P2 ∨ P3 <proof>

moreover { assume P1 . . . have ?thesis <proof> }

moreover { assume P2 . . . have ?thesis <proof> }

moreover { assume P3 . . . have ?thesis <proof> }

ultimately show ?thesis by blast

qed

{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }

stands for P1 =⇒ P

Slide 20

Copyright NICTA 2014, provided under Creative Commons Attribution License 10

Mixing proof styles

from . . .

have . . .

apply - make incoming facts assumptions

apply (. . .)
...

apply (. . .)

done

Slide 21

11

