e

NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

>>=

Slide 1

e

Last Time

NICTA

=» Weakest precondition
=» Verification conditions
-» Example program proofs
=» Arrays, pointers

Slide 2

Content

=» Intro & motivation, getting started

=» Foundations & Principles
e Lambda Calculus, natural deduction
o Higher Order Logic
o Term rewriting

=» Proof & Specification Techniques
e Inductively defined sets, rule induction
e Datatypes, recursion, induction
e Hoare logic, proofs about programs, C verification
e (mid-semester break)
o Writing Automated Proof Methods
e lIsar, codegen, typecl locales

e
NICTA
1

[1.2]
(3]
[4

(5]
6,71
[8,9]

[10]
[11¢,12]

“al due; “a2 due; “a3 due

Slide 3

Deep Embeddings

For the IMP language, we used a datatype com to represent its syntax.

=» We then defined its semantics over this datatype.

e

NICTA

This is called a deep embedding: separate representation of language terms

and their semantics.

Advantages:

=» Can prove general theorems about the language, not just of programs.

=» e.g. expresiveness, correct compilation, completeness of inference system ...

=» usually by structural induction over the syntax type.

Disadvantages:

-» Semantically equivalent programs are not obviously equal.
-» e.g. “IF True THEN SKIP ELSE SKIP = SKIP" is not a true theorem.

-» Many concepts that we already have in the logic are reinvented in the language.

Slide 4

e

Shallow Embeddings
NICTA

Shallow Embedding: represent only the semantics, directly in the logic.
=» Write a definition for each language construct, which gives its semantics.
=» Programs are represented as instances of these definitions.

Example: model the semantics of programs as functions of type state = state
SKIP= JXs.s
IFbTHENCELSEd= JXs.ifbsthencselseds

=» “IF True THEN SKIP ELSE SKIP = SKIP” is now a true statement.
=» can use the simplifier to do semantics-preserving program rewriting.

Today we learn about a formalism suitable for shallowly embedding C semantics.

Slide 5

e

NICTA

Records in Isabelle

Records are a tuples with named components

Example:
record A= a:nat
b ::int
=» Selectors: a:xA=-nat, b:A=int, ar=Suc0

=» Constructors: (a=Suc0, b=—-1)
= Update: r(a:=Suc0O|, b_update(Ab.b+1)r

Records are extensible:
record B=A +
c :: nat list

(a=Suc0, b=-1,c=10,0])

Slide 6

e

NICTA

DEmMoO

Slide 7

e

NICTA
Shallow embedding suitable to represent (a useful fragment of) C programs.

Nondeterministic State Monad with Failure

Able to express lots of C ideas:
=» Access to volatile variables, external APIs: Nondeterminism
=*» Undefined behaviour: Failure
=» Early exit (return, break, continue): Exceptional control flow

Relatively straightforward Hoare logic

Used extensively in the seL4 verification work:
=» Formalism for the seL4 abstract, design and capDL specifications
=» Refinement calculus for proving refinment between them and down to code.

AutoCorres: verified translation of C to monadic representation
=» Specifically designed for humans to do proofs over.

Slide 8

e

NICTA
Model the semantics of a (deterministic) computation as a function of type

State Monad: Motivation

5= (ax?)

The computation operates over a state of type ’s:
=» Includes all global variables, external devices, etc.

The computation also yields a return value of type ‘a:
-» e.g. aprogram’s exit status (in POSIX, ‘a would be the type of 8-bit words)
=» e.g. return-value of a C function

return — the computation that leaves the state unchanged and returns its
argument:

return x = As. (x,8)

Slide 9

e

State Monad: Basic Operations
NICTA

get — returns the entire state without modifying it:

get = As. (s,8)
put — updates the state with its argument and returns the unit value ():
puts= A (().)
bind — sequences two computations; the second takes the first’s return-value:
c>=d = MXs.let(r,s’)=csindrs’
gets — returns a projection of the state; leaves the state unmodified:
gets f = get >>= (As. return (fs))
modify — applies its argument to modify the state; returns ():
modify f = get >>= (As. put (fs))

Slide 10

e

Monads, Laws

NICTA
Formally: a monad M is a type constructor with two associated operations.

return :a = Ma bind:Ma=(a=Mp)=Mp

Infix Notation: a >>= b is infix notation for bind a b
= >>= binds to the left: (a >= b >>=c¢) = ((a>>= b) >=0¢)

Do-Notation: a >>= (A\x. b x) is often written as do x < a; b x od

Monad Laws:
return-absorb-left: (return x >=1) = fx
return-absorb-right: (m>>=return) = m
bind-assoc: ((@a>=b)>=c) = (a>=(\x.bx>=c))

Slide 11

e

State Monad: Example

NICTA
record state =
hp :: int ptr = int
A fragment of C: f i “int ptr = (state = (unit,state))”
void f(int *p) { fp=
int x = xp; do
(k< 10) o X < gets (As. hp s p);
*p = x++;
} if x < 10 then
} modify (hp-update (Ah. (h(p :=x + 1))))
else
return ()
od
Slide 12

e

NICTA

State Monad with Failure

Allows computations to fail: s = ((‘a x ’s) x_bool)
bind - fails when either computation fails

bind ab = let ((,s),f) =a s; ((r’,s"),f’)=brs’in((rs”), f vV)

fail — the computation that always fails:
fail = As. (undefined, True)

assert — fails when given condition is False:
assert P = if P then return () else fail

guard - fails when given condition applied to the state is False:
guard P = get >>= (\s. assert (P s))

Slide 13

e

NICTA

Guards

Used to assert the absence of undefined behaviour in C

=» pointer validity, absence of divide by zero, signed overflow, etc.

fp=
do
y <—guard (\s. valid s p);
X < gets (As. hp s p);
if x < 10 then
modify (hp_update (Ah. (h(p := x + 1))))
else
return ()
od

Slide 14

e

NICTA
Allows computations to be nondeterministic: s = (('a x s) set x bool)

Nondeterministic State Monad with Failure

Nondeterminism: computations return a set of possible results.
= Allows underspecification: e.g. malloc, external devices, etc.

bind - runs the second computation for all results returned by the first:
bindab= Xs. ({(r’s"). 3(r,s) efst(as). (r,s”) efst(br's’)},
snd (as) Vv (3(r,s’) efst(as). snd (br’'s’)))
All non-failing computations so far are deterministic:

= e.g. return x = Xs. ({(x,5)},False)
=» Others are similar.

select — nondeterministic selection from a set
select A= \s. ((A x{s}),False)

Slide 15
e
NICTA
DEmoO
Slide 16

e

While Loops
NICTA

Monadic while loop, defined inductively.

whileLoop :: (‘'a = s = bool) =
(‘a = (s = (‘a x) set x bool)) =
(‘a = (s = (‘a x) set x bool))

whileLoop C B
=» condition C: takes loop parameter and state as arguments, returns bool
-» monadic body B: takes loop parameter as argument, return-value is the updated
loop paramter
=» fails if the loop body ever fails or if the loop never terminates

Example: whileLoop (Ap s. hp s p = 0) (Ap. return (ptrAdd p 1)) p

Slide 17

e

Defining While Loops Inductively
NICTA

Two-part definition: results and termination

Results: while_results :: (‘a = s = bool) =
('a = (s = (‘a x ’s) set x bool)) =
((("'a x 's) option) x ((‘a x ’s) option)) set

-Crs .
(Some (r,s), Some (r,s)) € while_results C B (terminate)

Crs snd(Brs)

(Some (r,s), None) € while_results C B (fail)

Crs (r,s))efst(Brs) (Some (r,s’), z) € while_results CB

(Some (r,s), z) € while_results CB (loop)

Slide 18

e

Defining While Loops Inductively

NICTA
Termination: while_terminates :: ('a = s = bool) =
(‘a = (s = (‘a x ’s) set x bool)) =

‘a = s = bool

-Crs

while_terminates CBrs (terminate)

Crs V(r,s)) e fst(Brs). while_terminates CBr's’

while_terminates CBrs (loop)

whileLoop C B =
(Ars. ({(r,s’). (Some (r, s), Some (r’, s’)) € while_results C B},
(Some (r, s), None) € while_results vV (—while_terminates C B r s)))

Slide 19

e

NICTA
Partial correctness: {P} m{Q} =Vs. Ps— VY (rs)cfst(ms). Qrs’
-» Post-condition Q is a predicate of the return-value and the result state.

Hoare Logic over Nondeterministic State Monads

Weakest Precondition Rules

{As. Px sl return x {Ars. Prs} {As. Pssfget{P} {A\s. P()x]} putx {P}

{As. P (fs) s} gets f { P} {As. P () (f s)} modify f {|P}

{As. P —Q () s} assert P {Q} {A_. True] fail {Q}

Slide 20

e

More Hoare Logic Rules

NICTA
P—{Q}f{St —~P= {R}g{S}
\s.(P— Qs) A (P — R)} if Pthen felse g {S}

Ax4Bx} gx{C} {A} f{B}
{A} do x«+ f. g xod {C}

{R m{Q} As.Ps=Rs
1Py m{Q}

Ar-Axs. lrsnCrsyB{l} Ars.[Irs; -Crs]= Qrs
{// ri} whileLoop C Br {Q}

Slide 21
e
NICTA

DEMO

Slide 22

e

We have seen today

NICTA

=» Deep and shallow embeddings

=» Isabelle records

=» Nondeterministic State Monad with Failure
=» Monadic Weakest Predondition Rules

Slide 23

12

