COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

{P}...{Q}

()®

NICTA

Content

=>» Intro & motivation, getting started

=» Foundations & Principles

e Lambda Calculus, natural deduction
e Higher Order Logic
e Term rewriting

=>» Proof & Specification Techniques

e Inductively defined sets, rule induction

e Datatypes, recursion, induction

e Hoare logic, proofs about programs, C verification
e (mid-semester break)

e Writing Automated Proof Methods

e Isar, codegen, typeclasses, locales

()e
NICTA
[1]

[1,2]
[3%]
[4]

[5]
6. 7]
[8°,9]

[10]
[11¢,12]

2a1 due; a2 due; “a3 due

NICTA

A CRASH COURSE IN SEMANTICS

NICTA

(FOR MORE, SEE THE BOOK Concrete Semantics BY
ToBIAS NIPKOW AND GERWIN KLEIN)

IMP - a small Imperative Language

()®

NICTA
Commands:
datatype com = SKIP
Assign vname aexp (- =)
Semi com com (2)
Cond bexp comcom (IF _THEN _ELSE)
(

While bexp com

type_synonym vname = string
type_synonym state = vname = nat
type_synonym aexp = state = nat
type_synonym bexp = state = bool

WHILE DO _OD)

Example Program

NICTA

Usual syntax:
B :=1;

WHILE A £ 0 DO
B := B x A;
A=A-1

OD

Expressions are functions from state to bool or nat:
B := (Mo. 1);
WHILE (Ao. o A # 0) DO
B:=(Ao.oc Bxog A);
A:=(Mo.c A-1)
OD

()®

NICTA

What does it do?

So far we have defined:

=» Syntax of commands and expressions
=» State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

=> A wide field of its own
-» Some choices:

e Operational (inductive relations, big step, small step)
e Denotational (programs as functions on states, state transformers)
e Axiomatic (pre-/post conditions, Hoare logic)

Structural Operational Semantics

NICTA

(SKIP, o) — o

eo =
(X :=e,0) = ol —]

(c1,0) >0 (co,0") — d”

(c1;¢9,0) — o

bo=True {(c1,0) — 0o’
(IF b THEN ¢; ELSE ¢5,0) — o

bo = False (c3,0) — o’
(IF b THEN ¢; ELSE ¢5,0) — o’

Structural Operational Semantics

NICTA
b o = False
(WHILE b DO ¢ OD,0) — o

bo=True {(c,0) — o (WHILEbDO cOD,c’) = o”
(WHILE b DO ¢ OD, o) — o

DEMO: THE DEFINITIONS IN ISABELLE

NICTA

10

()®

Proofs about Programs
NICTA

Now we know:

=» What programs are: Syntax
=» On what they work: State
-» How they work: Semantics

So we can prove properties about programs

Example:
Show that example program from slide 6 implements the factorial.

lemma (factorial,c) — 0/ = ¢'B = fac (6 A)

(where fac0 =1, fac (Sucn)= (Sucn)x*facn)

11

DEMO: EXAMPLE PROOF

NICTA

12

Too tedious

Induction needed for each loop

Is there something easier?

NICTA

13

Floyd/Hoare

Idea: describe meaning of program by pre/post conditions

Examples:
{True} z:=2 {x=2}
{y=2} z:=21xy {z=42}

{r=n} IFy<OTHENz:=2+yELSExz:=2—y {z=n— |y}

{A=n} factorial {B =facn}

Proofs: have rules that directly work on such triples

NICTA

14

()®

NICTA

Meaning of a Hoare-Triple

{Pr ¢ {Q;
What are the assertions P and (Q?
=» Here: again functions from state to bool

(shallow embedding of assertions)
=» Other choice: syntax and semantics for assertions (deep embedding)

What does {P} ¢ {Q} mean?

Partial Correctness:

={P}c{Q} = Voo .PoAN{co)—c — Q07
Total Correctness:
={P}c{Q} = (Noo'.PoAN{c,o)—>d —Qd')N

(Vo. P o — do’. (¢,0) — 0’)

This lecture: partial correctness only (easier)

15

Hoare Rules

{P} SKIP {P} {Plx—e]} xz:=e {P}

1P} a (R} {R} i@}
Py e {Q}

{PAb} e {QF {PA—b}er {Q}
{P} IFbTHEN ¢; ELSEco {Q}

(PADYc{P} PA-b=Q
{P} WHILEbDO cOD {Q}

P—= P {P}cid} Q=0
Py ¢ {Q}

NICTA

16

()@

Hoare Rules

NICTA

-{P} SKIP {P} F{\o. P (o(x:=e€e0))} xz:=e {P}

- {P;a{R} F{R}c{Q]
—{P} cse {Q)

- {do. PoAbot e {R} F{lo. PoA=bo} e {Q}
- {P} IFbTHEN ¢; ELSE ¢, {Q}

F{do. PoAbo}c{P} No. PoA-bo=—= Qo
-{P} WHILEbDO cOD {Q}

No.Po=— P o F{P'}c{Q'} No. Qo= Qo
{P} ¢ {Q;

17

Are the Rules Correct?

Soundness: - {P} ¢ {Q} = {P} ¢ {Q}

Proof: by rule induction on - { P} ¢ {Q}

Demo: Hoare Logic in Isabelle

NICTA

18

