
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

fun

1



Content

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6, 7]

• Hoare logic, proofs about programs, C verification [8b,9]

• (mid-semester break)

• Writing Automated Proof Methods [10]

• Isar, codegen, typeclasses, locales [11c,12]
aa1 due; ba2 due; ca3 due
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General Recursion

The Choice

➜ Limited expressiveness, automatic termination

• primrec

➜ High expressiveness, termination proof may fail

• fun

➜ High expressiveness, tweakable, termination proof manual

• function
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fun — examples

fun sep :: ”’a ⇒ ’a list ⇒ ’a list”
where

”sep a (x # y # zs) = x # a # sep a (y # zs)” |
”sep a xs = xs”

fun ack :: ”nat ⇒ nat ⇒ nat”
where

”ack 0 n = Suc n” |
”ack (Suc m) 0 = ack m 1” |
”ack (Suc m) (Suc n) = ack m (ack (Suc m) n)”
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fun

➜ The definiton:

• pattern matching in all parameters

• arbitrary, linear constructor patterns

• reads equations sequentially like in Haskell (top to bottom)

• proves termination automatically in many cases
(tries lexicographic order)

➜ Generates own induction principle

➜ May fail to prove termination:

• use function (sequential) instead

• allows you to prove termination manually
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fun — induction principle

➜ Each fun definition induces an induction principle

➜ For each equation:

show P holds for lhs, provided P holds for each recursive call on rhs

➜ Example sep.induct :
[[
∧

a. P a [];
∧

a w. P a [w]
∧

a x y zs. P a (y#zs) =⇒ P a (x#y#zs);

]] =⇒ P a xs
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Termination

Isabelle tries to prove termination automatically

➜ For most functions this works with a lexicographic termination relation.

➜ Sometimes not⇒ error message with unsolved subgoal

➜ You can prove automation separately.

function (sequential) quicksort where

quicksort [] = [] |

quicksort (x#xs) = quicksort [y ← xs.y ≤ x]@[x]@ quicksort [y ← xs.x < y]

by pat completeness auto

termination

by (relation “measure length”) (auto simp: less Suc eq le)

function is the fully tweakable, manual version of fun
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DEMO

Copyright NICTA 2014, provided under Creative Commons Attribution License 8



How does fun/function work?

Recall primrec :

➜ defined one recursion operator per datatype D

➜ inductive definition of its graph (x, f x) ∈ D rel

➜ prove totality: ∀x. ∃y. (x, y) ∈ D rel

➜ prove uniqueness: (x, y) ∈ D rel⇒ (x, z) ∈ D rel⇒ y = z

➜ recursion operator for datatype D rec, defined via THE.

➜ primrec: apply datatype recursion operator
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How does fun/function work?

Similar strategy for fun :

➜ a new inductive definition for each fun f

➜ extract recursion scheme for equations in f

➜ define graph f rel inductively, encoding recursion scheme

➜ prove totality (= termination)

➜ prove uniqueness (automatic)

➜ derive original equations from f rel

➜ export induction scheme from f rel

Copyright NICTA 2014, provided under Creative Commons Attribution License 10



How does fun/function work?

Can separate and defer termination proof:

➜ skip proof of totality

➜ instead derive equations of the form: x ∈ f dom⇒ f x = . . .

➜ similarly, conditional induction principle

➜ f dom = acc f rel

➜ acc = accessible part of f rel

➜ the part that can be reached in finitely many steps

➜ termination = ∀x. x ∈ f dom

➜ still have conditional equations for partial functions
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Proving Termination

Command termination fun name sets up termination goal
∀x. x ∈ fun name dom

Three main proof methods:

➜ lexicographic order (default tried by fun )

➜ size change (different automated technique)

➜ relation R (manual proof via well-founded relation)
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Well Founded Orders

Definition
<r is well founded if well founded induction holds
wf r ≡ ∀P. (∀x. (∀y <r x.P y) −→ P x) −→ (∀x. P x)

Well founded induction rule:
wf r

∧
x. (∀y <r x. P y) =⇒ P x

P a

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
every nonempty set has a minimal element wrt <r

min r Q x ≡ ∀y ∈ Q. y 6<r x

wf r = (∀Q 6= {}. ∃m ∈ Q. min r Q m)
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Well Founded Orders: Examples

➜ < on IN is well founded

well founded induction = complete induction

➜ > and ≤ on IN are not well founded

➜ x <r y = x dvd y ∧ x 6= 1 on IN is well founded
the minimal elements are the prime numbers

➜ (a, b) <r (x, y) = a <1 x ∨ a = x ∧ b <2 y is well founded

if <1 and <2 are

➜ A <r B = A ⊂ B ∧ finite B is well founded

➜ ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That
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Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:

➜ fun fib where
fib 0 = 1 |
fib (Suc 0) = 1 |

fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ❀ n, Suc (Suc n) ❀ Suc n

➜ fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: x 6= 0 =⇒ x ❀ x - 1
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Extracting the Recursion Scheme

Higher Oder:

➜ datatype ’a tree = Leaf ’a | Branch ’a tree list

fun treemap :: (’a⇒ ’a)⇒ ’a tree⇒ ’a tree where
treemap fn (Leaf n) = Leaf (fn n) |

treemap fn (Branch l) = Branch (map (treemap fn) l)

Recursion : x ∈ set l =⇒ (fn, Branch l) ❀ (fn, x)

How to extract the context information for the call?
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Extracting the Recursion Scheme

Extracting context for equations

⇒

Congruence Rules!

Recall rule if cong :

[| b = c; c =⇒ x = u; ¬ c =⇒ y = v |] =⇒

(if b then x else y) = (if c then u else v)

Read: for transforming x, use b as context information, for y use ¬b.

In fun def: for recursion in x, use b as context, for y use ¬b.
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Congruence Rules for fun defs

The same works for function definitions.

declare my rule[fundef cong]
(if cong already added by default)

Another example (higher-order):
[| xs = ys;

∧
x. x ∈ set ys =⇒ f x = g x |] =⇒ map f xs = map g ys

Read: for recursive calls in f , f is called with elements of xs
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DEMO
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Further Reading

Alexander Krauss,

Automating Recursive Definitions and Termination Proofs in Higher-Order Logic.

PhD thesis, TU Munich, 2009.

http://www4.in.tum.de/ ˜ krauss/diss/krauss_phd.pdf
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We have seen today ...

➜ General recursion with fun /function

➜ Induction over recursive functions

➜ How fun works

➜ Termination, partial functions, congruence rules
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