

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

fun

Content

	NICTA
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3 ^{<i>a</i>}]
Term rewriting	[4]
Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	[6, 7]
 Hoare logic, proofs about programs, C verification 	[8 ^b ,9]
 (mid-semester break) 	
 Writing Automated Proof Methods 	[10]
 Isar, codegen, typeclasses, locales 	[11 ^{<i>c</i>} ,12]
^{<i>a</i>} a1 due; ^{<i>b</i>} a2 due; ^{<i>c</i>} a3 due	

0

The Choice

- → Limited expressiveness, automatic termination
 - primrec
- → High expressiveness, termination proof may fail
 - fun
- → High expressiveness, tweakable, termination proof manual
 - function


```
fun sep :: "'a \Rightarrow 'a list \Rightarrow 'a list"
```

where

"sep a (x # y # zs) = x # a # sep a (y # zs)" | "sep a xs = xs"

fun ack :: "nat \Rightarrow nat \Rightarrow nat"

where

```
"ack 0 n = Suc n" |
"ack (Suc m) 0 = ack m 1" |
"ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"
```


- → The definiton:
 - pattern matching in all parameters
 - arbitrary, linear constructor patterns
 - reads equations sequentially like in Haskell (top to bottom)
 - proves termination automatically in many cases (tries lexicographic order)
- → Generates own induction principle
- → May fail to prove termination:
 - use function (sequential) instead
 - allows you to prove termination manually

- → Each **fun** definition induces an induction principle
- → For each equation:

show P holds for lhs, provided P holds for each recursive call on rhs

→ Example sep.induct:

$$\begin{bmatrix} \land a. P \ a \ []; \\ \land a \ w. P \ a \ [w] \\ \land a \ x \ y \ zs. P \ a \ (y \# zs) \Longrightarrow P \ a \ (x \# y \# zs); \\ \end{bmatrix} \Longrightarrow P \ a \ xs$$

Isabelle tries to prove termination automatically

- → For most functions this works with a lexicographic termination relation.
- \clubsuit Sometimes not \Rightarrow error message with unsolved subgoal
- → You can prove automation separately.

function (sequential) quicksort where

quicksort [] = [] | quicksort (x # xs) = quicksort $[y \leftarrow xs.y \le x]@[x]@$ quicksort $[y \leftarrow xs.x < y]$ by pat_completeness auto

termination

by (relation "measure length") (auto simp: less_Suc_eq_le)

function is the fully tweakable, manual version of fun

Dемо

Copyright NICTA 2014, provided under Creative Commons Attribution License

Recall primrec:

- \rightarrow defined one recursion operator per datatype D
- → inductive definition of its graph $(x, f x) \in D_rel$
- → prove totality: $\forall x. \exists y. (x, y) \in D_rel$
- → prove uniqueness: $(x, y) \in D_rel \Rightarrow (x, z) \in D_rel \Rightarrow y = z$
- → recursion operator for datatype D_rec , defined via THE.
- ➔ primrec: apply datatype recursion operator

Similar strategy for fun:

- \rightarrow a new inductive definition for each fun f
- \rightarrow extract *recursion scheme* for equations in *f*
- → define graph f_rel inductively, encoding recursion scheme
- → prove totality (= termination)
- → prove uniqueness (automatic)
- \rightarrow derive original equations from f_rel
- \rightarrow export induction scheme from f_rel

Can separate and defer termination proof:

- → skip proof of totality
- → instead derive equations of the form: $x \in f_dom \Rightarrow f \ x = \dots$
- \rightarrow similarly, conditional induction principle
- $f_dom = acc f_rel$
- → acc = accessible part of f_rel
- → the part that can be reached in finitely many steps
- → termination = $\forall x. x \in f_dom$
- → still have conditional equations for partial functions

Command **termination fun_name** sets up termination goal $\forall x. x \in fun_name_dom$

Three main proof methods:

- → lexicographic_order (default tried by fun)
- → size_change (different automated technique)
- → relation R (manual proof via well-founded relation)

Definition

 $<_r$ is well founded if well founded induction holds wf $r \equiv \forall P. (\forall x. (\forall y <_r x.P y) \longrightarrow P x) \longrightarrow (\forall x. P x)$

Well founded induction rule:

$$\frac{\text{wf } r \quad \bigwedge x. \ (\forall y <_r x. \ P \ y) \Longrightarrow P \ x}{P \ a}$$

Alternative definition (equivalent):

there are no infinite descending chains, or (equivalent): every nonempty set has a minimal element wrt $<_r$

$$\min r \ Q \ x \quad \equiv \quad \forall y \in Q. \ y \not<_r x$$

wf
$$r = (\forall Q \neq \{\}, \exists m \in Q, \min r Q m)$$

Well Founded Orders: Examples

- → < on IN is well founded
 well founded induction = complete induction
- \clubsuit > and \leq on ${\rm I\!N}$ are **not** well founded
- → $x <_r y = x \text{ dvd } y \land x \neq 1 \text{ on } \mathbb{N}$ is well founded the minimal elements are the prime numbers
- → $(a,b) <_r (x,y) = a <_1 x \lor a = x \land b <_2 y$ is well founded if $<_1$ and $<_2$ are
- → $A <_r B = A \subset B \land$ finite *B* is well founded
- \clubsuit \subseteq and \subset in general are not well founded

More about well founded relations: Term Rewriting and All That

So far for termination. What about the recursion scheme? Not fixed anymore as in primrec.

Examples:

→ fun fib where

fib 0 = 1 | fib (Suc 0) = 1 | fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) \rightsquigarrow n, Suc (Suc n) \rightsquigarrow Suc n

→ fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: $x \neq 0 \Longrightarrow x \rightsquigarrow x - 1$

Higher Oder:

→ datatype 'a tree = Leaf 'a | Branch 'a tree list

fun treemap :: ('a \Rightarrow 'a) \Rightarrow 'a tree \Rightarrow 'a tree **where** treemap fn (Leaf n) = Leaf (fn n) | treemap fn (Branch I) = Branch (map (treemap fn) I)

```
Recursion: x \in \text{set I} \Longrightarrow (\text{fn, Branch I}) \rightsquigarrow (\text{fn, x})
```

How to extract the context information for the call?

Extracting context for equations

 \Rightarrow

Congruence Rules!

Recall rule if_cong:

$$[| b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v |] \Longrightarrow$$

(if b then x else y) = (if c then u else v)

Read: for transforming x, use b as context information, for y use $\neg b$.

In fun_def: for recursion in x, use *b* as context, for *y* use $\neg b$.

The same works for function definitions.

declare my_rule[fundef_cong]
(if_cong already added by default)

Another example (higher-order):

 $[| xs = ys; \land x. x \in set ys \Longrightarrow f x = g x |] \Longrightarrow map f xs = map g ys$

Read: for recursive calls in f, f is called with elements of xs

Dемо

Copyright NICTA 2014, provided under Creative Commons Attribution License

Alexander Krauss,

Automating Recursive Definitions and Termination Proofs in Higher-Order Logic. PhD thesis, TU Munich, 2009.

http://www4.in.tum.de/~krauss/diss/krauss_phd.pdf

We have seen today ...

- → General recursion with fun/function
- → Induction over recursive functions
- → How fun works
- → Termination, partial functions, congruence rules