
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

fun

1

Content

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6, 7]

• Hoare logic, proofs about programs, C verification [8b,9]

• (mid-semester break)

• Writing Automated Proof Methods [10]

• Isar, codegen, typeclasses, locales [11c,12]
aa1 due; ba2 due; ca3 due

Copyright NICTA 2014, provided under Creative Commons Attribution License 2

General Recursion

The Choice

➜ Limited expressiveness, automatic termination

• primrec

➜ High expressiveness, termination proof may fail

• fun

➜ High expressiveness, tweakable, termination proof manual

• function

Copyright NICTA 2014, provided under Creative Commons Attribution License 3

fun — examples

fun sep :: ”’a ⇒ ’a list ⇒ ’a list”
where

”sep a (x # y # zs) = x # a # sep a (y # zs)” |
”sep a xs = xs”

fun ack :: ”nat ⇒ nat ⇒ nat”
where

”ack 0 n = Suc n” |
”ack (Suc m) 0 = ack m 1” |
”ack (Suc m) (Suc n) = ack m (ack (Suc m) n)”

Copyright NICTA 2014, provided under Creative Commons Attribution License 4

fun

➜ The definiton:

• pattern matching in all parameters

• arbitrary, linear constructor patterns

• reads equations sequentially like in Haskell (top to bottom)

• proves termination automatically in many cases
(tries lexicographic order)

➜ Generates own induction principle

➜ May fail to prove termination:

• use function (sequential) instead

• allows you to prove termination manually

Copyright NICTA 2014, provided under Creative Commons Attribution License 5

fun — induction principle

➜ Each fun definition induces an induction principle

➜ For each equation:

show P holds for lhs, provided P holds for each recursive call on rhs

➜ Example sep.induct :
[[
∧

a. P a [];
∧

a w. P a [w]
∧

a x y zs. P a (y#zs) =⇒ P a (x#y#zs);

]] =⇒ P a xs

Copyright NICTA 2014, provided under Creative Commons Attribution License 6

Termination

Isabelle tries to prove termination automatically

➜ For most functions this works with a lexicographic termination relation.

➜ Sometimes not⇒ error message with unsolved subgoal

➜ You can prove automation separately.

function (sequential) quicksort where

quicksort [] = [] |

quicksort (x#xs) = quicksort [y ← xs.y ≤ x]@[x]@ quicksort [y ← xs.x < y]

by pat completeness auto

termination

by (relation “measure length”) (auto simp: less Suc eq le)

function is the fully tweakable, manual version of fun

Copyright NICTA 2014, provided under Creative Commons Attribution License 7

DEMO

Copyright NICTA 2014, provided under Creative Commons Attribution License 8

How does fun/function work?

Recall primrec :

➜ defined one recursion operator per datatype D

➜ inductive definition of its graph (x, f x) ∈ D rel

➜ prove totality: ∀x. ∃y. (x, y) ∈ D rel

➜ prove uniqueness: (x, y) ∈ D rel⇒ (x, z) ∈ D rel⇒ y = z

➜ recursion operator for datatype D rec, defined via THE.

➜ primrec: apply datatype recursion operator

Copyright NICTA 2014, provided under Creative Commons Attribution License 9

How does fun/function work?

Similar strategy for fun :

➜ a new inductive definition for each fun f

➜ extract recursion scheme for equations in f

➜ define graph f rel inductively, encoding recursion scheme

➜ prove totality (= termination)

➜ prove uniqueness (automatic)

➜ derive original equations from f rel

➜ export induction scheme from f rel

Copyright NICTA 2014, provided under Creative Commons Attribution License 10

How does fun/function work?

Can separate and defer termination proof:

➜ skip proof of totality

➜ instead derive equations of the form: x ∈ f dom⇒ f x = . . .

➜ similarly, conditional induction principle

➜ f dom = acc f rel

➜ acc = accessible part of f rel

➜ the part that can be reached in finitely many steps

➜ termination = ∀x. x ∈ f dom

➜ still have conditional equations for partial functions

Copyright NICTA 2014, provided under Creative Commons Attribution License 11

Proving Termination

Command termination fun name sets up termination goal
∀x. x ∈ fun name dom

Three main proof methods:

➜ lexicographic order (default tried by fun)

➜ size change (different automated technique)

➜ relation R (manual proof via well-founded relation)

Copyright NICTA 2014, provided under Creative Commons Attribution License 12

Well Founded Orders

Definition
<r is well founded if well founded induction holds
wf r ≡ ∀P. (∀x. (∀y <r x.P y) −→ P x) −→ (∀x. P x)

Well founded induction rule:
wf r

∧
x. (∀y <r x. P y) =⇒ P x

P a

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
every nonempty set has a minimal element wrt <r

min r Q x ≡ ∀y ∈ Q. y 6<r x

wf r = (∀Q 6= {}. ∃m ∈ Q. min r Q m)

Copyright NICTA 2014, provided under Creative Commons Attribution License 13

Well Founded Orders: Examples

➜ < on IN is well founded

well founded induction = complete induction

➜ > and ≤ on IN are not well founded

➜ x <r y = x dvd y ∧ x 6= 1 on IN is well founded
the minimal elements are the prime numbers

➜ (a, b) <r (x, y) = a <1 x ∨ a = x ∧ b <2 y is well founded

if <1 and <2 are

➜ A <r B = A ⊂ B ∧ finite B is well founded

➜ ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

Copyright NICTA 2014, provided under Creative Commons Attribution License 14

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:

➜ fun fib where
fib 0 = 1 |
fib (Suc 0) = 1 |

fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ❀ n, Suc (Suc n) ❀ Suc n

➜ fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: x 6= 0 =⇒ x ❀ x - 1

Copyright NICTA 2014, provided under Creative Commons Attribution License 15

Extracting the Recursion Scheme

Higher Oder:

➜ datatype ’a tree = Leaf ’a | Branch ’a tree list

fun treemap :: (’a⇒ ’a)⇒ ’a tree⇒ ’a tree where
treemap fn (Leaf n) = Leaf (fn n) |

treemap fn (Branch l) = Branch (map (treemap fn) l)

Recursion : x ∈ set l =⇒ (fn, Branch l) ❀ (fn, x)

How to extract the context information for the call?

Copyright NICTA 2014, provided under Creative Commons Attribution License 16

Extracting the Recursion Scheme

Extracting context for equations

⇒

Congruence Rules!

Recall rule if cong :

[| b = c; c =⇒ x = u; ¬ c =⇒ y = v |] =⇒

(if b then x else y) = (if c then u else v)

Read: for transforming x, use b as context information, for y use ¬b.

In fun def: for recursion in x, use b as context, for y use ¬b.

Copyright NICTA 2014, provided under Creative Commons Attribution License 17

Congruence Rules for fun defs

The same works for function definitions.

declare my rule[fundef cong]
(if cong already added by default)

Another example (higher-order):
[| xs = ys;

∧
x. x ∈ set ys =⇒ f x = g x |] =⇒ map f xs = map g ys

Read: for recursive calls in f , f is called with elements of xs

Copyright NICTA 2014, provided under Creative Commons Attribution License 18

DEMO

Copyright NICTA 2014, provided under Creative Commons Attribution License 19

Further Reading

Alexander Krauss,

Automating Recursive Definitions and Termination Proofs in Higher-Order Logic.

PhD thesis, TU Munich, 2009.

http://www4.in.tum.de/ ˜ krauss/diss/krauss_phd.pdf

Copyright NICTA 2014, provided under Creative Commons Attribution License 20

We have seen today ...

➜ General recursion with fun /function

➜ Induction over recursive functions

➜ How fun works

➜ Termination, partial functions, congruence rules

Copyright NICTA 2014, provided under Creative Commons Attribution License 21

