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Content

[ Intro & motivation, getting started

[J Foundations & Principles

e Lambda Calculus, natural deduction
e Higher Order Logic
e Term rewriting

[1 Proof & Specification Techniques

¢ Inductively defined sets, rule induction

e Datatypes, recursion, induction

e Hoare logic, proofs about programs, C verification
e (mid-semester break)

e Writing Automated Proof Methods

e Isar, codegen, typeclasses, locales
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General Recursion

NICTA
The Choice

[J Limited expressiveness, automatic termination

e primrec

[1 High expressiveness, termination proof may fail

e fun

[J High expressiveness, tweakable, termination proof manual

e function



fun — examples
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fun sep :: "a = "alist = 'alist”

where
"sepa(x#y#Hzs)=x#a#sepal(y#zs)
"Sep a Xs = Xs”

fun ack :: "nat = nat = nat”
where
"ack O n=Sucn”
"ack (Sucm)0=ackm1”
"ack (Suc m) (Suc n) = ack m (ack (Suc m) n)”
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NICTA

[1 The definiton:

e pattern matching in all parameters
e arbitrary, linear constructor patterns
e reads equations sequentially like in Haskell (top to bottom)
e proves termination automatically in many cases
(tries lexicographic order)

[J Generates own induction principle

[1 May fail to prove termination:

e use function (sequential) instead
e allows you to prove termination manually



fun — induction principle
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[1 Each fun definition induces an induction principle

[1 For each equation:

show P holds for |Ihs, provided P holds for each recursive call on rhs

[J Example sep.induct :

[ Aa. Pall;
Naw. Pa |w]

Nazxyzs. Pa(y#Hzs) = P a (z#y#zs);
| = Paxs



Termination
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Isabelle tries to prove termination automatically

[1 For most functions this works with a lexicographic termination relation.
[1 Sometimes not = error message with unsolved subgoal
[J You can prove automation separately.

function (sequential) quicksort where

quicksort [] =] |

quicksort (z#xs) = quicksort [y + xs.y < x]Q[x]@ quicksort [y + xs.z < y]
by pat_completeness auto

termination
by (relation “measure length”) (auto simp: less_Suc_eqg_le)

function is the fully tweakable, manual version of fun
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How does fun/function work?
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Recall primrec

[1 defined one recursion operator per datatype D

inductive definition of its graph (z, f ) € D_rel

prove totality: Va. Jy. (z,y) € D_rel

prove uniqueness: (z,y) € D_rel = (x,2) € Drel = y =z
recursion operator for datatype D_rec, defined via THE.

O O 0O O

primrec: apply datatype recursion operator



How does fun/function work?

Similar strategy for fun:

[

a new inductive definition for each fun f

extract recursion scheme for equations in f
define graph f_rel inductively, encoding recursion scheme

prove totality (= termination)
prove unigueness (automatic)

derive original equations from f_rel
export induction scheme from f_rel
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How does fun/function work?

Can separate and defer termination proof:

[

skip proof of totality

instead derive equations of the form: z € f_.dom = fz = ...

similarly, conditional induction principle

f_dom = acc f_rel
acc = accessible part of f_rel
the part that can be reached in finitely many steps

termination = Vx. x € f_dom
still have conditional equations for partial functions
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Proving Termination

Command termination fun _name sets up termination goal

Vx. x € fun.name_dom

Three main proof methods:
[ lexicographic _order (default tried by fun)
[1 size_change (different automated technique)
[1 relation R (manual proof via well-founded relation)

NICTA
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Well Founded Orders

Definition
<, I1s well founded if well founded induction holds
wf r=VP. (Vx. (Vy <, z.Py) — P x) — (Vz. P x)

Well founded induction rule:
wfr Az (Vy<,2. Py)= Pz

Pa

Alternative definition (equivalent):

there are no infinite descending chains, or (equivalent):

every nonempty set has a minimal element wrt <,
mnrQxz = YyeQ.y<Lrzx
wf r = VQ#A{}.Im e Q. minr Q@ m)

( )®
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Well Founded Orders: Examples

[1 < on N is well founded
well founded induction = complete induction

[0 > and < on N are not well founded

0 xz<,y=xdvd y Ax # 1onIN is well founded
the minimal elements are the prime numbers

0 (a,b) <, (z,y) =a <1 xVa=zAb<syis well founded
if <; and <5 are

0 A<, B=A C B A finite B is well founded

[ C and C in general are not well founded

More about well founded relations: Term Rewriting and All That
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Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:

[1 fun fib where
fibo=1|
fib (Suc 0) =1 |

fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ~» n, Suc (Suc n) ~ Suc n

[1 fun fwhere fx=(fx=0thenOelsef(x-1)*2)

Recursion: X #0 = X~ x -1

()@
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Extracting the Recursion Scheme

Higher Oder:

[ datatype ’'atree = Leaf’a | Branch 'a tree list

fun treemap :: (a = 'a) = 'a tree = ’a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn (Branch |) = Branch (map (treemap fn) I)

Recursion : x € set| = (fn, Branch |) ~ (fn, x)

How to extract the context information for the call?

NICTA
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Extracting the Recursion Scheme

Extracting context for equations
=

Congruence Rules!
Recall rule if_cong :

|[b=c;c=x=u;-c=y=v||=
(if b then x else y) = (if c then u else v)

Read: for transforming x, use b as context information, for y use —b.

In fun _def: for recursion in x, use b as context, for y use —b.
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Congruence Rules for fun_defs

The same works for function definitions.

declare my_rule[fundef_cong]
(if_cong already added by default)

Another example (higher-order):
| Xs=ys; AX.x e setys = fx=gx|| = mapfxs=mapgys

Read: for recursive calls in f, f is called with elements of xs

NICTA
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DEMO
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Further Reading
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Alexander Krauss,

Automating Recursive Definitions and Termination Proofs in Higher-Order Logic.
PhD thesis, TU Munich, 2009.

http://www4.in.tum.de/ ~ krauss/diss/krauss_phd.pdf
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We have seen today ...

OO O O

General recursion with fun /function

Induction over recursive functions

How fun works

Termination, partial functions, congruence rules
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