

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

Content

→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	$[3^a]$
Term rewriting	[4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	[6, 7]
 Hoare logic, proofs about programs, C verification 	$[8^b, 9]$
• (mid-semester break)	
 Writing Automated Proof Methods 	[10]
 Isar, codegen, typeclasses, locales 	[11 ^c ,12]

 $[^]a$ a1 due; b a2 due; c a3 due

Datatypes

Example:

Properties:

→ Constructors:

Nil :: 'a list

Cons :: 'a \Rightarrow 'a list \Rightarrow 'a list

→ Distinctness: Nil ≠ Cons x xs

→ Injectivity: $(Cons x xs = Cons y ys) = (x = y \land xs = ys)$

The General Case

datatype
$$(\alpha_1, \ldots, \alpha_n) \tau = \mathsf{C}_1 \tau_{1,1} \ldots \tau_{1,n_1}$$

$$\mid \ldots \mid \mathsf{C}_k \tau_{k,1} \ldots \tau_{k,n_k}$$

- \rightarrow Constructors: $C_i :: \tau_{i,1} \Rightarrow \ldots \Rightarrow \tau_{i,n_i} \Rightarrow (\alpha_1,\ldots,\alpha_n) \tau$
- ightharpoonup Distinctness: $C_i \ldots \neq C_j \ldots$ if $i \neq j$
- \rightarrow Injectivity: $(C_i x_1 \dots x_{n_i} = C_i y_1 \dots y_{n_i}) = (x_1 = y_1 \wedge \dots \wedge x_{n_i} = y_{n_i})$

Distinctness and Injectivity applied automatically

datatype 'a list = Nil | Cons 'a "'a list"

- → internally defined using typedef
- → hence: describes a set
- → set = trees with constructors as nodes
- → inductive definition to characterise which trees belong to datatype

More detail: HOL/Datatype.thy

Datatype Limitations

Must be definable as set.

- → Infinitely branching ok.
- → Mutually recursive ok.
- → Strictly positive (right of function arrow) occurrence ok.

Not ok:

$$\begin{array}{rcl} \textbf{datatype t} & = & C \ (\textbf{t} \Rightarrow \textbf{bool}) \\ & | & D \ ((\textbf{bool} \Rightarrow \textbf{t}) \Rightarrow \textbf{bool}) \\ & | & E \ ((\textbf{t} \Rightarrow \textbf{bool}) \Rightarrow \textbf{bool}) \end{array}$$

Because: Cantor's theorem (α set is larger than α)

Case

Every datatype introduces a case construct, e.g.

(case
$$xs$$
 of $[] \Rightarrow \dots \mid y \# ys \Rightarrow \dots y \dots ys \dots)$

In general: one case per constructor

- \rightarrow Nested patterns allowed: x#y#zs
- → Dummy and default patterns with _
- → Binds weakly, needs () in context

apply (case_tac t)

creates k subgoals

$$\llbracket t = C_i \ x_1 \dots x_p; \dots \rrbracket \Longrightarrow \dots$$

one for each constructor C_i

DEMO

RECURSION

How about f x = f x + 1?

Subtract f x on both sides.

$$\Longrightarrow 0 = 1$$

All functions in HOL must be total

primrec guarantees termination structurally

Example primrec def:

```
primrec app :: "'a list ⇒ 'a list ⇒ 'a list"
where
"app Nil ys = ys" |
```

"app (Cons x xs) ys = Cons x (app xs ys)"

If τ is a datatype (with constructors C_1, \ldots, C_k) then $f :: \tau \Rightarrow \tau'$ can be defined by **primitive recursion**:

$$f(C_1 y_{1,1} \dots y_{1,n_1}) = r_1$$

 \vdots
 $f(C_k y_{k,1} \dots y_{k,n_k}) = r_k$

The recursive calls in r_i must be **structurally smaller** (of the form f a_1 ... $y_{i,j}$... a_p)

How does this Work?

primrec just fancy syntax for a recursion operator

```
Example: list_rec :: "'b \Rightarrow ('a \Rightarrow 'a list \Rightarrow 'b \Rightarrow 'b) \Rightarrow 'a list \Rightarrow 'b"
```

 $\operatorname{list_rec} f_1 f_2 \operatorname{Nil} = f_1$

 $\mathsf{list_rec}\ f_1\ f_2\ (\mathsf{Cons}\ x\ xs) \quad = \quad f_2\ x\ xs\ (\mathsf{list_rec}\ f_1\ f_2\ xs)$

 $\mathsf{app} \equiv \mathsf{list_rec} \; (\lambda ys. \; ys) \; (\lambda x \; xs \; xs'. \; \lambda ys. \; \mathsf{Cons} \; x \; (xs' \; ys))$

primrec app :: "'a list \Rightarrow 'a list \Rightarrow 'a list"

where

"app Nil ys = ys" |

"app (Cons x xs) ys = Cons x (app xs ys)"

Defined: automatically, first inductively (set), then by epsilon

$$\frac{(xs,xs') \in \mathsf{list_rel}\ f_1\ f_2}{(\mathsf{Nil},f_1) \in \mathsf{list_rel}\ f_1\ f_2} \qquad \frac{(xs,xs') \in \mathsf{list_rel}\ f_1\ f_2}{(\mathsf{Cons}\ x\ xs,f_2\ x\ xs\ xs') \in \mathsf{list_rel}\ f_1\ f_2}$$

 $\mathsf{list_rec}\ f_1\ f_2\ xs \equiv \mathsf{THE}\ y.\ (xs,y) \in \mathsf{list_rel}\ f_1\ f_2$

Automatic proof that set def indeed is total function (the equations for list_rec are lemmas!)

PREDEFINED DATATYPES

datatype nat $= 0 \mid Suc nat$

Functions on nat definable by primrec!

primrec

$$f 0 = \dots$$

 $f (\operatorname{Suc} n) = \dots f n \dots$

Option

datatype 'a option = None | Some 'a

Important application:

'b \Rightarrow 'a option \sim partial function:

None \sim no result

Some $a \sim \text{result } a$

Example:

primrec lookup :: 'k \Rightarrow ('k \times 'v) list \Rightarrow 'v option

where

lookup k [] = None

lookup k (x # xs) = (if fst x = k then Some (snd x) else lookup k xs)

DEMO: PRIMREC

INDUCTION

Structural induction

P xs holds for all lists xs if

- $\rightarrow P$ Nil
- \rightarrow and for arbitrary x and xs, P $xs \Longrightarrow P$ (x # xs)

Induction theorem list.induct:

$$\llbracket P \; []; \; \bigwedge a \; list. \; P \; list \Longrightarrow P \; (a \# list) \rrbracket \Longrightarrow P \; list$$

- → General proof method for induction: (induct x)
 - ullet x must be a free variable in the first subgoal.
 - type of x must be a datatype.

Theorems about recursive functions are proved by induction

Induction on argument number i of f if f is defined by recursion on argument number i

Example

A tail recursive list reverse:

primrec itrev :: 'a list \Rightarrow 'a list \Rightarrow 'a list \Rightarrow the where

itrev []
$$ys = ys$$
 | itrev $(x\# xs)$ $ys =$ itrev xs $(x\# ys)$

lemma itrev xs [] = rev xs

DEMO: PROOF ATTEMPT

Replace constants by variables

lemma itrev $xs \ ys = \text{rev } xs@ys$

Quantify free variables by ∀

(except the induction variable)

lemma $\forall ys$. itrev $xs \ ys = \text{rev } xs@ys$

Or: apply (induct xs arbitrary: ys)

We have seen today ...

- → Datatypes
- → Primitive recursion
- → Case distinction
- → Structural Induction

Exercises

- → define a primitive recursive function Isum :: nat list ⇒ nat that returns the sum of the elements in a list.
- → show "2 * Isum $[0.. < Suc \ n] = n * (n+1)$ "
- → show "lsum (replicate $n \ a$) = n * a"
- → define a function **IsumT** using a tail recursive version of listsum.
- \rightarrow show that the two functions are equivalent: Isum xs = IsumT xs