

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

Slide 1

Contact	
Content	- NICTA
	NICIA
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3a]
Term rewriting	[4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
Datatypes, recursion, induction	[6, 7]
 Hoare logic, proofs about programs, C verification 	[8 ^b ,9]
(mid-semester break)	
 Writing Automated Proof Methods 	[10]
 Isar, codegen, typeclasses, locales 	[11 ^c ,12]

 $[^]a$ a1 due; b a2 due; c a3 due

Slide 2

Last Time

- → Conditional term rewriting
- → Case Splitting with the simplifier
- → Congruence rules
- → AC Rules
- → Knuth-Bendix Completion (Waldmeister)
- → Orthogonal Rewrite Systems

Slide 3

SPECIFICATION TECHNIQUES: SETS

Sets in Isabelle

Type 'a set: sets over type 'a

- → {}, $\{e_1, \ldots, e_n\}$, $\{x. P x\}$
- $\rightarrow e \in A, A \subseteq B$
- \rightarrow $A \cup B$, $A \cap B$, A B, -A
- **→** {*i..j*}
- ightharpoonup insert :: $\alpha \Rightarrow \alpha$ set $\Rightarrow \alpha$ set
- → ...

Slide 5

Proofs about Sets

Natural deduction proofs:

- ightharpoonup equalityl: $[\![A\subseteq B;\ B\subseteq A]\!] \Longrightarrow A=B$
- \rightarrow subsetl: $(\bigwedge x. \ x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$
- → ... (see Tutorial)

Bounded Quantifiers

- $\Rightarrow \forall x \in A. \ P \ x \equiv \forall x. \ x \in A \longrightarrow P \ x$
- $\Rightarrow \exists x \in A. \ P \ x \equiv \exists x. \ x \in A \land P \ x$
- \rightarrow ball: $(\bigwedge x. \ x \in A \Longrightarrow P \ x) \Longrightarrow \forall x \in A. \ P \ x$
- ightharpoonup bspec: $[\![\forall x \in A.\ P\ x; x \in A]\!] \Longrightarrow P\ x$
- \rightarrow bexl: $\llbracket P \ x; x \in A \rrbracket \Longrightarrow \exists x \in A. \ P \ x$

Slide 7

NICTA

DEMO: SETS

Slide 8

Slide 6

3

The Three Basic Ways of Introducing Theorems

→ Axioms:

Example: **axioms** refl: "t = t"

Do not use. Evil. Can make your logic inconsistent.

→ Definitions:

Example: **definition** inj **where** "inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$ " Introduces a new lemma called inj_def.

→ Proofs:

Example: **lemma** "inj $(\lambda x. x + 1)$ "

The harder, but safe choice.

Slide 9

The Three Basic Ways of Introducing Types

→ typedecl: by name only

Example: **typedecl** names Introduces new type *names* without any further assumptions

→ type_synonym: by abbreviation

Example: type.synonym α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ " Introduces abbreviation *rel* for existing type $\alpha \Rightarrow \alpha \Rightarrow bool$ Type abbreviations are immediately expanded internally

→ typedef: by definiton as a set

Example: **typedef** new_type = "{some set}" <proof>
Introduces a new type as a subset of an existing type.

The proof shows that the set on the rhs in non-empty.

Slide 10

How typedef works

Slide 11

How typedef works

Slide 12

Example: Pairs

 (α, β) Prod

- ① Pick existing type: $\alpha \Rightarrow \beta \Rightarrow bool$
- ② Identify subset:

$$(\alpha,\beta) \ \mathsf{Prod} = \{f. \ \exists a \ b. \ f = \lambda(x :: \alpha) \ (y :: \beta). \ x = a \land y = b\}$$

- ③ We get from Isabelle:
 - functions Abs_Prod, Rep_Prod
 - both injective
 - Abs_Prod (Rep_Prod x) = x
- We now can:
 - define constants Pair, fst, snd in terms of Abs_Prod and Rep_Prod
 - derive all characteristic theorems
 - forget about Rep/Abs, use characteristic theorems instead

Slide 13

DEMO: INTRODUCING NEW TYPES

Slide 14

INDUCTIVE DEFINITIONS

Slide 15

Example

$$\frac{\langle c_1, \sigma \rangle \longrightarrow \sigma' \quad \langle c_2, \sigma' \rangle \longrightarrow \sigma''}{\langle c_1; c_2, \sigma \rangle \longrightarrow \sigma''}$$

$$\frac{\llbracket b \rrbracket \sigma = \mathsf{False}}{\langle \mathsf{while} \ b \ \mathsf{do} \ c, \sigma \rangle \longrightarrow \sigma}$$

$$\frac{[\![b]\!]\sigma = \mathsf{True} \quad \langle c, \sigma \rangle \longrightarrow \sigma' \quad \langle \mathsf{while} \ b \ \mathsf{do} \ c, \sigma' \rangle \longrightarrow \sigma''}{\langle \mathsf{while} \ b \ \mathsf{do} \ c, \sigma \rangle \longrightarrow \sigma''}$$

What does this mean?

- $ightharpoonup \langle c, \sigma \rangle \longrightarrow \sigma'$ fancy syntax for a relation $(c, \sigma, \sigma') \in E$
- \rightarrow relations are sets: E :: (com \times state \times state) set
- → the rules define a set inductively

But which set?

Slide 17

Simpler Example

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in I}$$

- ightharpoonup N is the set of natural numbers ${\mathbb N}$
- ightharpoonup But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- → N is the smallest set that is consistent with the rules.

Why the smallest set?

- → Objective: **no junk**. Only what must be in *X* shall be in *X*.
- → Gives rise to a nice proof principle (rule induction)
- → Alternative (greatest set) occasionally also useful: coinduction

Slide 18

Rule Induction

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

induces induction principle

$$\llbracket P\ 0;\ \bigwedge n.\ P\ n \Longrightarrow P\ (n+1) \rrbracket \Longrightarrow \forall x \in N.\ P\ x$$

Slide 19

10

DEMO: INDUCTIVE DEFINITONS

We have learned today ...

- → Sets
- → Type Definitions
- → Inductive Definitions