e Oe

Last Time

Content

NICTA NICTA

0 Equations and Term Rewriting
0 Confluence and Termination of reduction systems
COMP 4161 0 Term Rewriting in Isabelle
NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

—

Slide 1 Slide 3

e Oe

Applying a Rewrite Rule

NICTA NICTA

O Intro & motivation, getting started [1] 0 | — r applicable to term ¢[s]

O Foundations & Principles

if there is substitution o such thato { = s
0 Result: t[o r]

e Lambda Calculus, natural deduction [1.2] 0 Equationally: ¢[s] = t[o 7]
o Higher Order Logic [39]
o Term rewriting [4]

O Proof & Specification Techniques

Example:

Rule: 0+n —n

e Inductively defined sets, rule induction [5]

o Datatypes, recursion, induction [6, 7] Term: a+ (0 + (b+¢))

e Hoare logic, proofs about programs, C verification [8%,9] Substitution: o = {n — b+ c}
e (mid-semester break)

e Writing Automated Proof Methods [10] Result: a + (b+ ¢)

e lIsar, codegen, typeclasses, locales [11¢,12]

“al due; "a2 due; “a3 due

Slide 2 Slide 4



e Oe

Conditional Term Rewriting Preprocessing
NICTA NICTA
Rewrite rules can be conditional: Preprocessing (recursive) for maximal simplification power:
[P...P]=1l=r -A +— A= False
A—B — A=DB
is applicable to term t[s] with o if AAB — AB
0 ol=sand B V. Az — A%z
Ooh,..., o P, are provable by rewriting.
A — A=True
Example: (p—qA-T)As
—
p=q="True p=r = False s =True
Slide 5 Slide 7

e Oe

Rewriting with Assumptions
NICTA NICTA

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma"frz=gzAhgax=fax= fa=2"

simp use and simplify assumptions DEMO
(simp (no_asm)) ignore assumptions

(simp (no_.asm_use))  simplify , but do not use assumptions

(simp (no_.asm_simp)) use, but do not simplify assumptions

Slide 6 Slide 8



e

NICTA

Case splitting with simp

P (if Athen s elset)

(A—)Ps)/\_(ﬁA*)Pt)

Automatic

P (caseeof 0 = a|Sucn = b)

(e=0— Pa)A(VYn.e=Sucn — Pb)

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

Slide 9

e

NICTA

Congruence Rules

congruence rules are about using context

Example : in P — @ we could use P to simplify terms in Q
For = hardwired (assumptions used in rewriting)
For other operators expressed with conditional rewriting.
Example: [P=P;PF = Q=Q]= (P —Q)=(P — Q")

Read: to simplify P — @
0 first simplify P to P’
0O then simplify Q to Q' using P’ as assumption
0O theresultis P" — Q'

Slide 10

e

NICTA

More Congruence

Sometimes useful, but not used automatically (slowdown):
conjcong: [P=P;P = Q=Q]= (PANQ)=(P'ANQ")

Context for if-then-else:
ifcong: [b=cc=z=u-c=y=1v] =

(if b then z else y) = (if ¢ then u else v)

Prevent rewriting inside then-else (default):
if_weak_cong: b = ¢ = (if b then z else y) = (if ¢ then z else y)

O declare own congruence rules with [cong] attribute
O delete with [cong del]
O use locally with e.g. apply (simp cong: <rule>)

Slide 11

e

NICTA

Ordered rewriting

Problem: z +y — y + « does not terminate

Solution:  use permutative rules only if term becomes

lexicographically smaller.
Example: b+a~»a+bbutnota+b~b+a.

For types nat, int etc:
e lemmas add_ac sort any sum (+)

e lemmas times _ac sort any product (x)

Example: apply (simp add: add_ac) yields
(b+e)+a~-~a+(b+c)

Slide 12



AC Rules

Example for associative-commutative rules:
Associative : ey oz=20(y®2)
Commutative : z0y=y0Ouz

These 2 rules alone get stuck too early (not confluent).

Example: (z0z) 0 (y©v)
Wewant: (202)0(yov)=v0(z0 (yO2)
We get: )0 YoOV)=v6 (Yo (z62))

Weneed: ACrule z0(y0z)=y0o(z0z2)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

Slide 13

DEMO

Slide 14

e

NICTA

e

NICTA

e

Back to Confluence

NICTA
Last time: confluence in general is undecidable.

But: confluence for terminating systems is decidable!

Problem: overlapping |hs of rules.

Definition:
Letl; —» r; and o — ro be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of /; unifies with 5.

Example:
Rules: (1) fz—a (@)gy—b () f(g92)—0b
Critical pairs:
W@  {zmget 0l fga) Do
3 2
@+  {z—y} b & gy B
Slide 15
e
Completion
NICTA
Dfr—a @gy—b @) f(gz)—0b
is not confluent
But it can be made confluent by adding rules!
How: join all critical pairs
Example:

W@ {zogzh 0l flg2) Do

shows that a = b (because a «= b), so we add « — b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

Slide 16



e

NICTA

DEMO: WALDMEISTER

Slide 17

e

Orthogonal Rewriting Systems
NICTA

Definitions:
Arule I — ris left-linear if no variable occurs twice in [.
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

Slide 18

We have learned today ...

0 Conditional term rewriting
0 Congruence rules

O ACrules

O More on confluence

Slide 19

10

e

NICTA



