

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

Content

	NICTA
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3 ^{<i>a</i>}]
Term rewriting	[4]
Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	[6, 7]
 Hoare logic, proofs about programs, C verification 	[8 ^b ,9]
 (mid-semester break) 	
 Writing Automated Proof Methods 	[10]
 Isar, codegen, typeclasses, locales 	[11 ^{<i>c</i>} ,12]
^{<i>a</i>} a1 due; ^{<i>b</i>} a2 due; ^{<i>c</i>} a3 due	

0

Last Time

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

- → $l \longrightarrow r$ applicable to term t[s]if there is substitution σ such that $\sigma l = s$
- → Result: $t[\sigma r]$
- → Equationally: $t[s] = t[\sigma r]$

Example:

Rule: $0 + n \longrightarrow n$

Term: a + (0 + (b + c))

Substitution: $\sigma = \{n \mapsto b + c\}$

Result: a + (b + c)

Conditional Term Rewriting

Rewrite rules can be conditional:

 $\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$

is **applicable** to term t[s] with σ if

- $\rightarrow \sigma l = s$ and
- → $\sigma P_1, \ldots, \sigma P_n$ are provable by rewriting.

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma "
$$f x = g x \land g x = f x \Longrightarrow f x = 2$$
"

simp	use and simplify assumptions
(simp (no_asm))	ignore assumptions
(simp (no_asm_use))	simplify, but do not use assumptions
(simp (no_asm_simp))	use , but do not simplify assumptions

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$\neg A \quad \mapsto \quad A = False$$

$$A \longrightarrow B \quad \mapsto \quad A \Longrightarrow B$$

$$A \land B \quad \mapsto \quad A, B$$

$$\forall x. \ A \ x \quad \mapsto \quad A \ ?x$$

$$A \quad \mapsto \quad A = True$$

Example: $(p \longrightarrow q \land \neg r) \land s$

 \mapsto

 $p \Longrightarrow q = True$ $p \Longrightarrow r = False$ s = True

Dемо

 $\begin{array}{c} P \ (\text{if } A \text{ then } s \text{ else } t) \\ = \\ (A \longrightarrow P \ s) \land (\neg A \longrightarrow P \ t) \end{array}$

Automatic

$$P (case e of 0 \Rightarrow a | Suc n \Rightarrow b)$$

=
$$(e = 0 \longrightarrow P a) \land (\forall n. e = Suc n \longrightarrow P b)$$

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \implies hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

$$\textbf{Example:} \hspace{0.2cm} \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$$

Read: to simplify $P \longrightarrow Q$

- \rightarrow first simplify *P* to *P'*
- → then simplify Q to Q' using P' as assumption
- \rightarrow the result is $P' \longrightarrow Q'$

More Congruence

Sometimes useful, but not used automatically (slowdown): **conj_cong**: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$

Context for if-then-else:

if_cong: $[\![b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v]\!] \Longrightarrow$ (if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):

if_weak_cong: $b = c \Longrightarrow$ (if b then x else y) = (if c then x else y)

- → declare own congruence rules with [cong] attribute
- → delete with [cong del]
- → use locally with e.g. **apply** (simp cong: <rule>)

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example: $b + a \rightsquigarrow a + b$ but not $a + b \rightsquigarrow b + a$.

For types nat, int etc:

- lemmas **add_ac** sort any sum (+)
- lemmas times_ac sort any product (*)

Example: apply (simp add: add_ac) yields
$$(b+c) + a \rightsquigarrow \cdots \rightsquigarrow a + (b+c)$$

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$ We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$ We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

If these 3 rules are present for an AC operator Isabelle will order terms correctly

Dемо

Back to Confluence

Last time: confluence in general is undecidable.But: confluence for terminating systems is decidable!Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables.

They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1) $f x \longrightarrow a$ (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ Critical pairs:

Completion

(1)
$$f x \longrightarrow a$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) $\{x \mapsto g z\}$ $a \xleftarrow{(1)} f(g z) \xrightarrow{(3)} b$ shows that a = b (because $a \xleftarrow{*} b$), so we add $a \longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

DEMO: WALDMEISTER

Definitions:

A rule $l \rightarrow r$ is left-linear if no variable occurs twice in l.

A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

We have learned today ...

- → Conditional term rewriting
- → Congruence rules
- → AC rules
- → More on confluence