

COMP 4161NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

Content

Last Time

- **→** Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- \rightarrow Term Rewriting in Isabelle

- → *l* → *r* applicable to term *t*[*s*] if there is substitution σ such that σ $l=s$
- ➜ **Result:** ^t[^σ ^r]
- \rightarrow Equationally: $t[s] = t[\sigma r]$

Example:

Rule: $0 + n \longrightarrow n$

Term: $a + (0 + (b + c))$

Substitution: $\sigma=\{n\mapsto b+c\}$

Result: $a + (b + c)$

Conditional Term Rewriting

Rewrite rules can be conditional:

 $\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$

is **applicable** to term $t[s]$ with σ if

- $\rightarrow \sigma l = s$ and
- $\rightarrow \sigma P_1, \ldots, \sigma P_n$ are provable by rewriting.

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma "
$$
f x = g x \land g x = f x \Longrightarrow f x = 2
$$
"

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$
\neg A \quad \mapsto \quad A = False
$$
\n
$$
A \longrightarrow B \quad \mapsto \quad A \Longrightarrow B
$$
\n
$$
A \land B \quad \mapsto \quad A, B
$$
\n
$$
\forall x. A \quad x \quad \mapsto \quad A \stackrel{?}{x} \quad A \quad \mapsto \quad A = True
$$

Example:
$$
(p \rightarrow q \land \neg r) \land s
$$

 \mapsto

 $p \Longrightarrow q = True \qquad p \Longrightarrow r = False \qquad s = True$

DEMO

 P (if A then s else $t)$ = $(A \longrightarrow P s) \land (\neg A \longrightarrow P t)$

Automatic

$$
P \text{ (case } e \text{ of } 0 \implies a \mid \text{Suc } n \implies b)
$$

=

$$
(e = 0 \implies P a) \land (\forall n. e = \text{Suc } n \implies P b)
$$

Manually: apply (simp split: nat.split)

Similar for any data type t: **t.split**

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \Longrightarrow hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example:
$$
[P = P'; P' \Longrightarrow Q = Q'] \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')
$$

Read: to simplify $P \longrightarrow Q$

- \rightarrow first simplify P to P'
- \rightarrow then simplify Q to Q' using P' as assumption
- \rightarrow the result is $P' \longrightarrow Q'$

More Congruence

Sometimes useful, but not used automatically (slowdown): **conj_cong**: $[P = P' ; P' \Longrightarrow Q = Q'] \Longrightarrow (P \wedge Q) = (P' \wedge Q')$

Context for if-then-else:

if_cong: $\llbracket b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v \rrbracket \Longrightarrow$ $(\textsf{if } b \textsf{ then } x \textsf{ else } y) = (\textsf{if } c \textsf{ then } u \textsf{ else } v)$

Prevent rewriting inside then-else (default):

if_weak_cong: $b = c \Longrightarrow$ (if b then x else y) $=$ (if c then x else y)

- ➜ declare own congruence rules with **[cong]** attribute
- ➜ delete with **[cong del]**
- ➜ use locally with e.g. **apply** (simp cong: <rule>)

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomeslexicographically smaller.

Example: $b + a \leadsto a + b$ but not $a + b \leadsto b + a$.

For types nat, int etc:

- lemmas **add ac** sort any sum (+)
- lemmas **times ac** sort any product (∗)

Example: apply (simp add: add.ac) yields
$$
(b + c) + a \rightsquigarrow \cdots \rightsquigarrow a + (b + c)
$$

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

These ² rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$ We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$ We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

We need: \bullet **AC** rule $x \odot (y \odot z) = y \odot (x \odot z)$

If these 3 rules are present for an AC operatorIsabelle will order terms correctly

DEMO

Back to Confluence

Last time: confluence in general is undecidable. **But:** confluence for terminating systems is decidable! **Problem:** overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables.
The fact of the choice of the contribution of the contribution of the contribution of the contribution of the con

They form a $\textbf{critical pair}$ if a non-variable subterm of l_1 unifies with $l_2.$

Example:

Rules: (1) f $x \longrightarrow a$ (2) g $y \longrightarrow b$ (3) f $(g$ $z) \longrightarrow b$ Critical pairs:

(1)+(3)
$$
\{x \mapsto g z\}
$$
 $a \stackrel{(1)}{\longleftarrow} f(g z) \stackrel{(3)}{\longrightarrow} b$
(3)+(2) $\{z \mapsto y\}$ $b \stackrel{(3)}{\longleftarrow} f(g y) \stackrel{(2)}{\longrightarrow} f b$

Completion

(1)
$$
f x \longrightarrow a
$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

 $(1)+(3)$ $\{x\mapsto$ $\mapsto g \ z \} \qquad a \stackrel{(1)}{\longleftrightarrow} f \ (g \ z) \stackrel{(3)}{\longrightarrow} b$ shows that $a=b$ (because $a \stackrel{*}{\longleftrightarrow} b$), so we add $a \longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

DEMO: WALDMEISTER

Definitions:

A **rule** $l \longrightarrow r$ is **left-linear** if no variable occurs twice in l . A **rewrite system** is **left-linear** if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

We have learned today ...

- **→** Conditional term rewriting
- **→ Congruence rules**
- **→** AC rules
- **→** More on confluence