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Content

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6, 7]

• Hoare logic, proofs about programs, C verification [8b,9]

• (mid-semester break)

• Writing Automated Proof Methods [10]

• Isar, codegen, typeclasses, locales [11c,12]
aa1 due; ba2 due; ca3 due
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Last Time

➜ Equations and Term Rewriting

➜ Confluence and Termination of reduction systems

➜ Term Rewriting in Isabelle
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Applying a Rewrite Rule

➜ l −→ r applicable to term t[s]

if there is substitution σ such that σ l = s

➜ Result: t[σ r]

➜ Equationally: t[s] = t[σ r]

Example:

Rule: 0 + n −→ n

Term: a+ (0 + (b+ c))

Substitution: σ = {n 7→ b+ c}

Result: a+ (b+ c)
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Conditional Term Rewriting

Rewrite rules can be conditional:

[[P1 . . . Pn]] =⇒ l = r

is applicable to term t[s] with σ if

➜ σ l = s and

➜ σ P1, . . . , σ Pn are provable by rewriting.
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Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma ”f x = g x ∧ g x = f x =⇒ f x = 2¨

simp use and simplify assumptions

(simp (no asm)) ignore assumptions

(simp (no asm use)) simplify , but do not use assumptions

(simp (no asm simp)) use , but do not simplify assumptions

Copyright NICTA 2014, provided under Creative Commons Attribution License 6



Preprocessing

Preprocessing (recursive) for maximal simplification power:

¬A 7→ A = False

A −→ B 7→ A =⇒ B

A ∧B 7→ A, B

∀x. A x 7→ A ?x

A 7→ A = True

Example: (p −→ q ∧ ¬r) ∧ s

7→

p =⇒ q = True p =⇒ r = False s = True
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DEMO
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Case splitting with simp

P (if A then s else t)
=

(A −→ P s) ∧ (¬A −→ P t)

Automatic

P (case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P a) ∧ (∀n. e = Suc n −→ P b)

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

Copyright NICTA 2014, provided under Creative Commons Attribution License 9



Congruence Rules

congruence rules are about using context

Example : in P −→ Q we could use P to simplify terms in Q

For =⇒ hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example : [[P = P ′;P ′ =⇒ Q = Q′]] =⇒ (P −→ Q) = (P ′ −→ Q′)

Read: to simplify P −→ Q

➜ first simplify P to P ′

➜ then simplify Q to Q′ using P ′ as assumption

➜ the result is P ′
−→ Q′
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More Congruence

Sometimes useful, but not used automatically (slowdown):
conj cong : [[P = P ′;P ′ =⇒ Q = Q′]] =⇒ (P ∧Q) = (P ′ ∧Q′)

Context for if-then-else:
if cong : [[b = c; c =⇒ x = u;¬c =⇒ y = v]] =⇒

(if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):
if weak cong : b = c =⇒ (if b then x else y) = (if c then x else y)

➜ declare own congruence rules with [cong] attribute

➜ delete with [cong del]

➜ use locally with e.g. apply (simp cong: <rule>)
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Ordered rewriting

Problem: x+ y −→ y + x does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example: b+ a ❀ a+ b but not a+ b ❀ b+ a.

For types nat, int etc:

• lemmas add ac sort any sum (+)

• lemmas times ac sort any product (∗)

Example: apply (simp add: add ac) yields

(b+ c) + a ❀ · · ·❀ a+ (b+ c)
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AC Rules

Example for associative-commutative rules:

Associative : (x⊙ y)⊙ z = x⊙ (y ⊙ z)

Commutative : x⊙ y = y ⊙ x

These 2 rules alone get stuck too early (not confluent).

Example: (z ⊙ x)⊙ (y ⊙ v)

We want: (z ⊙ x)⊙ (y ⊙ v) = v ⊙ (x⊙ (y ⊙ z))

We get: (z ⊙ x)⊙ (y ⊙ v) = v ⊙ (y ⊙ (x⊙ z))

We need: AC rule x⊙ (y ⊙ z) = y ⊙ (x⊙ z)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly
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DEMO
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Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

Critical pairs:

(1)+(3) {x 7→ g z} a
(1)
←− f (g z)

(3)
−→ b

(3)+(2) {z 7→ y} b
(3)
←− f (g y)

(2)
−→ f b
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Completion

(1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x 7→ g z} a
(1)
←− f (g z)

(3)
−→ b

shows that a = b (because a
∗

←→ b), so we add a −→ b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.
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DEMO: WALDMEISTER
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Orthogonal Rewriting Systems

Definitions:
A rule l −→ r is left-linear if no variable occurs twice in l.
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages
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We have learned today ...

➜ Conditional term rewriting

➜ Congruence rules

➜ AC rules

➜ More on confluence
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