
COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

λ
→

and HOL

Slide 1

Last time...

➜ Simply typed lambda calculus: λ→

➜ Typing rules for λ→, type variables, type contexts

➜ β-reduction in λ→ satisfies subject reduction

➜ β-reduction in λ→ always terminates

➜ Types and terms in Isabelle

Slide 2

Copyright NICTA 2014, provided under Creative Commons Attribution License 1

Content

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6, 7]

• Hoare logic, proofs about programs, C verification [8b,9]

• (mid-semester break)

• Writing Automated Proof Methods [10]

• Isar, codegen, typeclasses, locales [11c,12]

aa1 due; ba2 due; ca3 due

Slide 3

PREVIEW: PROOFS IN ISABELLE

Slide 4

Copyright NICTA 2014, provided under Creative Commons Attribution License 2



Proofs in Isabelle

General schema:

lemma name: ”<goal>”

apply <method>

apply <method>

. . .

done

➜ Sequential application of methods until
all subgoals are solved.

Slide 5

The Proof State

1.
∧
x1 . . . xp.[[A1; . . . ;An]] =⇒ B

2.
∧
y1 . . . yq .[[C1; . . . ;Cm]] =⇒ D

x1 . . . xp Parameters

A1 . . .An Local assumptions

B Actual (sub)goal

Slide 6

Copyright NICTA 2014, provided under Creative Commons Attribution License 3

Isabelle Theories

Syntax:

theoryMyTh

imports ImpTh
1

. . . ImpThn

begin

(declarations, definitions, theorems, proofs, ...)∗

end

➜ MyTh: name of theory. Must live in file MyTh.thy

➜ ImpTh
i
: name of imported theories. Import transitive.

Unless you need something special:

theory MyTh imports Main begin . . . end

Slide 7

Natural Deduction Rules

A B
A ∧ B

conjI
A ∧B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2
A ∨B A =⇒ C B =⇒ C

C
disjE

A =⇒ B
A −→ B

impI
A −→ B A B =⇒ C

C
impE

For each connective (∧,∨, etc):

introduction and elimination rules

Slide 8

Copyright NICTA 2014, provided under Creative Commons Attribution License 4



Proof by assumption

apply assumption

proves

1. [[B1; . . . ;Bm]] =⇒ C

by unifying C with one of the Bi

There may be more than one matching Bi and multiple unifiers.

Backtracking!

Explicit backtracking command: back

Slide 9

Intro rules

Intro rules decompose formulae to the right of =⇒.

apply (rule <intro-rule>)

Intro rule [[A1; . . . ;An]] =⇒ A means

➜ To prove A it suffices to show A1 . . . An

Applying rule [[A1; . . . ;An]] =⇒ A to subgoal C:

➜ unify A and C

➜ replace C with n new subgoals A1 . . . An

Slide 10

Copyright NICTA 2014, provided under Creative Commons Attribution License 5

Elim rules

Elim rules decompose formulae on the left of =⇒.

apply (erule <elim-rule>)

Elim rule [[A1; . . . ;An]] =⇒ A means

➜ If I know A1 and want to prove A it suffices to show A2 . . . An

Applying rule [[A1; . . . ;An]] =⇒ A to subgoal C:

Like rule but also

➜ unifies first premise of rule with an assumption

➜ eliminates that assumption

Slide 11

DEMO

Slide 12

Copyright NICTA 2014, provided under Creative Commons Attribution License 6



MORE PROOF RULES

Slide 13

Iff, Negation, True and False

A =⇒ B B =⇒ A
A = B

iffI
A = B [[A −→ B;B −→ A]] =⇒ C

C
iffE

A = B
A =⇒ B

iffD1
A = B
B =⇒ A

iffD2

A =⇒ False
¬A

notI
¬A A

P
notE

True
TrueI

False
P

FalseE

Slide 14

Copyright NICTA 2014, provided under Creative Commons Attribution License 7

Equality

t = t
refl

s = t
t = s

sym r = s s = t
r = t

trans

s = t P s
P t

subst

Rarely needed explicitly — used implicitly by term rewriting

Slide 15

Classical

P = True ∨ P = False
True-or-False

P ∨ ¬P
excluded-middle

¬A =⇒ False
A

ccontr
¬A =⇒ A

A
classical

➜ excluded-middle, ccontr and classical

not derivable from the other rules.

➜ if we include True-or-False, they are derivable

They make the logic “classical”, “non-constructive”

Slide 16

Copyright NICTA 2014, provided under Creative Commons Attribution License 8



Cases

P ∨ ¬P
excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case tac term)

Slide 17

Safe and not so safe

Safe rules preserve provability

conjI, impI, notI, iffi, refl, ccontr, classical, conjE, disjE

A B
A ∧B

conjI

Unsafe rules can turn a provable goal into an unprovable one

disjI1, disjI2, impE, iffD1, iffD2, notE

A
A ∨B

disjI1

Apply safe rules before unsafe ones

Slide 18

Copyright NICTA 2014, provided under Creative Commons Attribution License 9

DEMO

Slide 19

What we have learned so far...

➜ natural deduction rules for ∧, ∨, −→, ¬, iff...

➜ proof by assumption, by intro rule, elim rule

➜ safe and unsafe rules

Slide 20

10


