| ę | 0   | •  |
|---|-----|----|
| N | IC. | ТА |

NICTA

## COMP 4161 NICTA Advanced Course

## Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

## $\lambda^{\rightarrow} {}_{\rm and \; {\rm HOL}}$

Slide 1

## Last time...

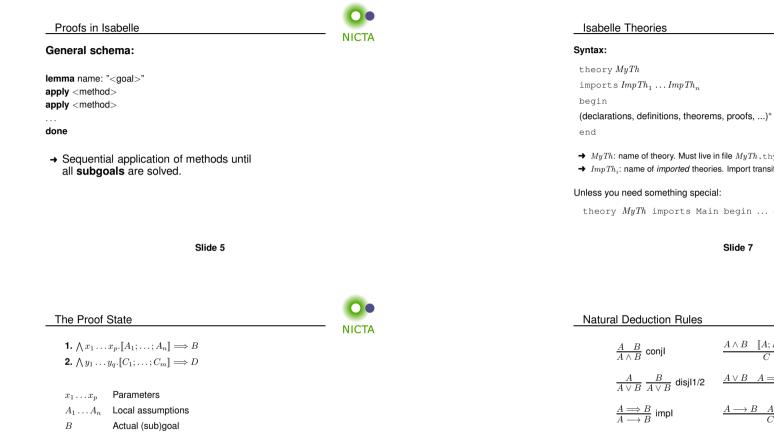
- → Simply typed lambda calculus:  $\lambda^{\rightarrow}$
- → Typing rules for  $\lambda^{\rightarrow}$ , type variables, type contexts
- →  $\beta$ -reduction in  $\lambda^{\rightarrow}$  satisfies subject reduction
- →  $\beta$ -reduction in  $\lambda^{\rightarrow}$  always terminates
- → Types and terms in Isabelle

| Oraclest                                                               |                      |
|------------------------------------------------------------------------|----------------------|
| Content                                                                | NICTA                |
| → Intro & motivation, getting started                                  | [1]                  |
| ➔ Foundations & Principles                                             |                      |
| <ul> <li>Lambda Calculus, natural deduction</li> </ul>                 | [1,2                 |
| Higher Order Logic                                                     | [3 <sup>a</sup>      |
| Term rewriting                                                         | [4                   |
| <ul> <li>Proof &amp; Specification Techniques</li> </ul>               |                      |
| <ul> <li>Inductively defined sets, rule induction</li> </ul>           | [5                   |
| <ul> <li>Datatypes, recursion, induction</li> </ul>                    | [6, 7                |
| <ul> <li>Hoare logic, proofs about programs, C verification</li> </ul> | [8 <sup>b</sup> ,9   |
| (mid-semester break)                                                   |                      |
| <ul> <li>Writing Automated Proof Methods</li> </ul>                    | [10                  |
| <ul> <li>Isar, codegen, typeclasses, locales</li> </ul>                | [11 <sup>c</sup> ,12 |

<sup>a</sup> a1 due; <sup>b</sup>a2 due; <sup>c</sup>a3 due

Slide 3




**PREVIEW: PROOFS IN ISABELLE** 

Slide 4

Slide 2

Copyright NICTA 2014, provided under Creative Commons Attribution License

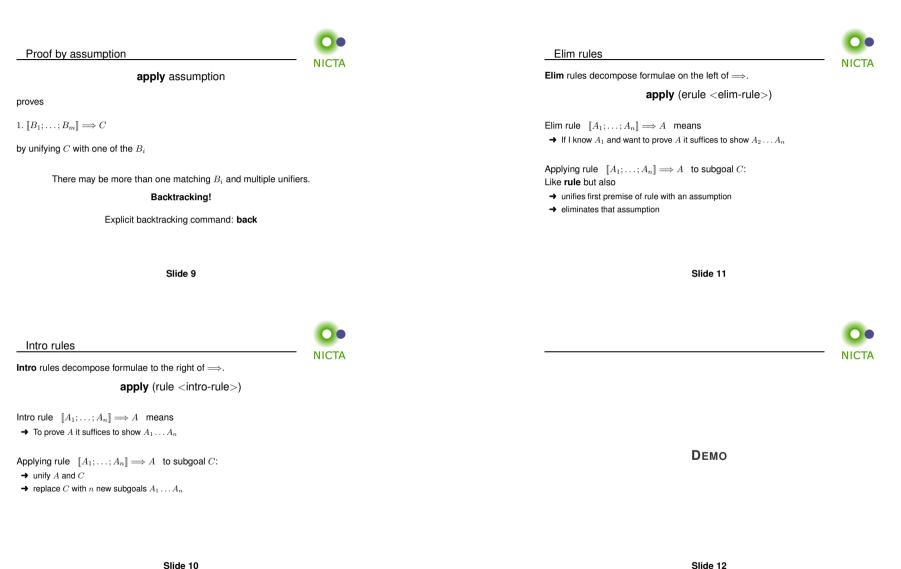
1

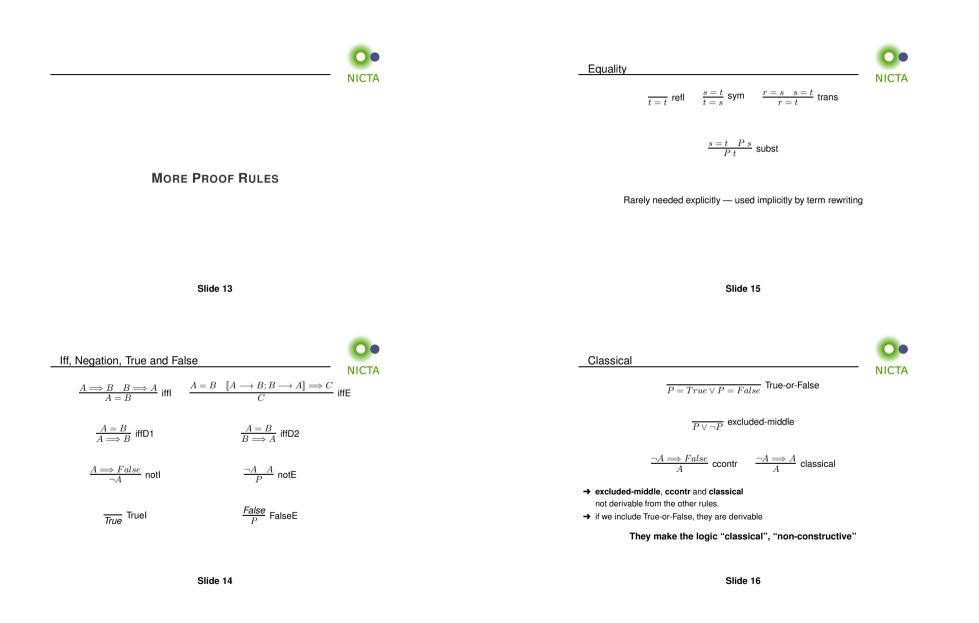




 $\rightarrow$  MyTh: name of theory. Must live in file MyTh.thy

→  $ImpTh_i$ : name of *imported* theories. Import transitive.


theory MyTh imports Main begin ... end


Slide 7

| Natural Deduction Rules                                        |                                                                                                                                                        | 0     |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                | $A \land P  \llbracket A, P \rrbracket \longrightarrow C$                                                                                              | NICTA |
| $rac{A}{A \wedge B}$ conjl                                    | $\frac{A \land B  \llbracket A; B \rrbracket \Longrightarrow C}{C} \text{ conjE}$                                                                      |       |
| $rac{A}{A \lor B} rac{B}{A \lor B}$ disjl1/2                 | $ \begin{array}{ccc} \underline{A \lor B} & \underline{A \Longrightarrow C} & \underline{B \Longrightarrow C} \\ \hline C & \end{array} \text{disjE} $ |       |
| $\frac{A \Longrightarrow B}{A \longrightarrow B} \text{ impl}$ | $\frac{A \longrightarrow B  A  B \Longrightarrow C}{C} \text{ impE}$                                                                                   |       |

For each connective ( $\land$ ,  $\lor$ , etc): introduction and elimination rules

Slide 8





