e

NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

Slide 1

e

Binary Search (java.util.Arrays)

1:
2:
ER
1

NICTA

public static int binarySearch(int(] a, int key) {
int low = 0;
int high = a.length - 1;

while (low <= high) {
int mid = (low + high) / 2;
int midval = a(mid];

if (midval < key)
low = mid + 1
else if (midval > key)
high = mid - 1;
else
return mid; // key found
}

return -(low + 1); // key not found.

int mid = (low + high) / 2;

http://googleresearch.blogspot.com/2006/06/
extra-extra-read-all-about-it-nearly.html

Slide 2

e

Organisatorials
NICTA

When Mon 14:00 - 15:30
Thu 15:00 - 16:30

Where Mon: Quadrangle G044 (E15-G044)
Thu: Mathews 309 (F23-309)

http://www.cse.unsw.edu.au/~cs4161/

Slide 3

e

About us

NICTA
Members of the selL4 verification team

=» Functional correctness and security of a C microkernel
Security <+ Isabelle/HOL model «+» Haskell model «+ C code

=> 10000 LOC /500 000 lines of proof script (!)

=» a bit under 30 person years of effort

It's all being open sourced, tomorrow!
http://seld.systems

We are always embarking on exciting new projects.
We offer
=» summer student scholarship projects
=>» honours and PhD theses
-» research assistant and verification engineer positions

Slide 4

What you will learn

=» how to use a theorem prover
=» background, how it works

=» how to prove and specify

=» how to reason about programs

Health Warning

Theorem Proving is addictive

Slide 5

Content — Using Theorem Provers

=» Intro & motivation, getting started

=» Foundations & Principles
e Lambda Calculus, natural deduction
e Higher Order Logic
e Term rewriting

=» Proof & Specification Techniques
e Inductively defined sets, rule induction
e Datatypes, recursion, induction
e Hoare logic, proofs about programs, C verification
e (mid-semester break)
o Writing Automated Proof Methods
e Isar, codegen, typecl locales

e

NICTA

e

NICTA
Rough timeline
[today]

[1.2]
[37]
[4]

(5]
[6,7]
[8,9]

[10]
[11¢,12]

“al due; “a2 due; °a3 due

Slide 6

What you should do to have a chance at succeeding

=» attend lectures

=» try Isabelle early

=» redo all the demos alone

=» try the exercises/homework we give, when we do give some

= DO NOT CHEAT

e

NICTA

o Assignments and exams are take-home. This does NOT mean you can work in

groups. Each submission is personal.
e For more info, see Plagiarism Policy*

a

www . cse.unsw.edu.au/about-us/organisational-structure/student-services/policies/

Slide 7

Credits

This course was originally written by

Gerwin Klein

Slide 8

e

NICTA

Qe

NICTA

Credits

some material (in using-theorem-provers part) shamelessly stolen from

Tobias Nipkow, Larry Paulson, Markus Wenzel

aX(
David Basin, Burkhardt Wolff

Don’t blame them, errors are ours

Slide 9
Oe
What is a proof?
NICTA
to prove (Merriam-Webster)

=» from Latin probare (test, approve, prove)
=» to learn or find out by experience (archaic)
=» to establish the existence, truth, or validity of
(by evidence or logic)
prove a theorem, the charges were never proved in court

pops up everywhere
=» politics (weapons of mass destruction)
=» courts (beyond reasonable doubt)
=» religion (god exists)
=» science (cold fusion works)

Slide 10

Qe

NICTA
In mathematics, a proof is a demonstration that, given certain axioms,
some statement of interest is necessarily true. (Wikipedia)

What is a mathematical proof?

Example: /2 is not rational.

Proof: assume there is r € @ such that r2 = 2.
Hence there are mutually prime p and ¢ with r = 2.
Thus 2¢2 = p?, i.e. p? is divisible by 2.

2 is prime, hence it also divides p, i.e. p = 2s.

Substituting this into 2¢> = p? and dividing by 2 gives ¢ = 2s2. Hence, ¢ is also
divisible by 2. Contradiction. Qed.

Slide 11

Qe

Nice, but..
NICTA

=» still not rigorous enough for some

e what are the rules?

e what are the axioms?

o how big can the steps be?

e what is obvious or trivial?
=» informal language, easy to get wrong
=» easy to miss something, easy to cheat

Theorem. A cat has nine tails.
Proof. No cat has eight tails. Since one cat has one more tail than no cat, it must
have nine tails.

Slide 12

e

NICTA

What is a formal proof?

A derivation in a formal calculus
Example: A A B — B A A derivable in the following system
XesS SU{X}+Y

Rules: §Fx (SSUmption) g (impl)
SEFX SkY o Su{xYirZz :
St xay) oy 7 ©onB)
Proof:
1. {A,B}+B (by assumption)
2. {A,B}F A (by assumption)
3. {A,B}FBANA (by conjl with 1 and 2)
4. {ANB}FBAA (by conjE with 3)
5. {JFAANB—sBAA (byimplwith 4)
Slide 13

e

NICTA

What is a theorem prover?

Implementation of a formal logic on a computer.
=» fully automated (propositional logic)
=-» automated, but not necessarily terminating (first order logic)
=» with automation, but mainly interactive (higher order logic)

=» based on rules and axioms
=» can deliver proofs

There are other (algorithmic) verification tools:
=> model checking, static analysis, ...
=» usually do not deliver proofs
=» See COMP3153: Algorithmic Verification

Slide 14

e

Why theorem proving?

NICTA

=» Analysing systems/programs thoroughly

=» Finding design and specification errors early

=» High assurance (mathematical, machine checked proof)
=¥ it's not always easy

= it's fun

Slide 15

e

Main theorem proving system for this course

NICTA

Isabelle

=» used here for applications, learning how to prove

Slide 16

What is Isabelle?

e

e

NICTA

A generic interactive proof assistant

>

>

-

generic:

not specialised to one particular logic
(two large developments: HOL and ZF, will mainly use HOL)

interactive:

more than just yes/no, you can interactively guide the system

proof assistant:

helps to explore, find, and maintain proofs

NICTA

If I prove it on the computer, it is correct, right?

Slide 17 Slide 19
(Je . " . (Je
Why Isabelle? If | prove it on the computer, it is correct, right?
NICTA NICTA
No, because:
- free @ hardware could be faulty
-» widely used systems @ operating system could be faulty
=» active development ® implementation runtime system could be faulty
=» high expressiveness and automation @ compiler could be faulty
=» reasonably easy to use ® implementation could be faulty
=» (and because we know it best ;-)) ® logic could be inconsistent
@ theorem could mean something else
Slide 18 Slide 20

e

If | prove it on the computer, it is correct, right?
NICTA

No, but:

probability for
=» OS and H/W issues reduced by using different systems
=» runtime/compiler bugs reduced by using different compilers
=» faulty implementation reduced by having the right prover architecture
=» inconsistent logic reduced by implementing and analysing it
=» wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than manual proof

Slide 21

e

If | prove it on the computer, it is correct, right?
NICTA

Soundness architectures

careful implementation PVS

LCF approach, small proof kernel HOL4
Isabelle

explicit proofs + proof checker Coq
Twelf
Isabelle
HOL4

Slide 22

e

Meta Logic
NICTA

Meta language:
The language used to talk about another language.

Examples:
English in a Spanish class, English in an English class

Meta logic:
The logic used to formalize another logic

Example:
Mathematics used to formalize derivations in formal logic

Slide 23

e

Meta Logic — Example
NICTA

Formulae: F:=V | F—F | FAF | False
Syntax: Viu=[A-Z]

Derivable: S+ X X aformula, S a set of formulae

logic / meta logic

Xes SU{XirY
SEX SEFX —Y
SEX SkY SUiX\Yirz
SEFXAY SU{XAY}FZ
Slide 24

Isabelle’s Meta Logic

e

A

NICTA

Slide 25

e

Syntax: Az F
inASCIl: 1!x. F

NICTA

(F' another meta level formula)

=» universal quantifier on the meta level

=» used to denote paramete!
=» example and more later

rs

Slide 26

=

Syntax: A—=— B (A, B other meta level formulae)

inASCIl: A ==>B

Binds to the right:

A= B=C = A= (B=0)

Abbreviation:
[A;B]—=C = A= B=C
=» read: A and B implies C

-» used to write down rules, theorems, and proof states

Slide 27

Example: a theorem

mathematics: ifz <0andy <0,thenz+y <0

formal logic: Fr<0Ay<0—z+y<0

variation: z<0y<0F x+y<0

Isabelle: lemma’z <0Ay<0—z+y<0’
variation: lemma [z < 0;y < 0] = z+y < 0"
variation: lemma

assumes "z < 0” and "y < 0” shows "z +y < 0”

Slide 28

e

NICTA

e

NICTA

Example: a rule

X Y
logic: XAY

SEX StY
variation: SEXAY
Isabelle: [X;Y] = X AY

Slide 29

Example: a rule with nested implication

XY

XvYy 2z Z
logic: Z

SU{X}FZ SU{Y}FZ

variation: SU{XVY}+Z
Isabelle: XVY; X =2,y = Z] = Z
Slide 30

Oe

NICTA

Oe

NICTA

A
Syntax: Az F (F" another meta level formula)
in ASCIl: %x. F

=» lambda abstraction

=» used for functions in object logics

=» used to encode bound variables in object logics
=» more about this in the next lecture

Slide 31

ENOUGH THEORY!
GETTING STARTED WITH ISABELLE

Slide 32

Oe

NICTA

Oe

NICTA

e Oe

Documentation
NICTA

System Architecture

NICTA
Available from http://isabelle.in.tum.de

=» Learning Isabelle
HOL, ZF — object-logics . Tutor?al on Isabelle/HOL (LNCS 2283)
o Tutorial on Isar
e Tutorial on Locales
=» Reference Manuals
o Isabelle/Isar Reference Manual
o |sabelle Reference Manual
e |sabelle System Manual
-» Reference Manuals for Object-Logics

Prover IDE (jEdit) — user interface

Isabelle — generic, interactive theorem prover

Standard ML - logic implemented as ADT

User can access all layers!

Slide 33 Slide 35

e Oe

jEdit/PIDE
NICTA

System Reguirements

NICTA

v
or_pugis ey

=» Linux, Windows, or MacOS X (10.7 +)

= Standard ML | Bty
(PolyML fastest, SML/NJ supports more platforms) x

=» Java (for jEdit)

text {* Toorspray-more types inside terms: *}
= |dectare [(show types))
= [tern s .

text {+ To switch off again: =)

Premade packages for Linux, Mac, and Windows + info on: = fietore st tpesiser
http://mirror.cse.unsw.edu.au/pub/isabelle/
Bl coomamnrmmrsas
Slide 34 Slide 36

Qe

jEdit/PIDE

jEdit/PIDE

NICTA

a0e

= frext ¢
00 I s (e b G e
constants (eg Suc) are displayed differently.

tern
cerm “sffc x-
cerm -

cern *Sie x = Suce y*
© ltern *ax

gﬁﬁ._

eaxt (+ © types inside terns: *}

Torrspraymor
© |dectare [(shou_types]]
= [term "suc x = Suce y*

[text (* To switch off again: %}
ldectare [Ishow_types=false]]
lterm "Suc x = Suce y;

= [text * 0 and + are overloaded: *}

55 e e ()
sue 5
Isabelle Output
e Usabele SIGeAICk,UTF-8- Isabelle) UG 124Mb 1026 AM.

Slide 37

Qe

NICTA

= text +
B it free st (o) s it (o)
EHERER B LaTeX Comment

logic terms go in
quotes:“x + 2”

= |eern

cext {+ e types insi

Torrspraywor
© |dectare [(show_types])
= [term "suc x = Succ y*

[text (* To switch off again: %}
ldectare [Ishow_types=false]]
term "Suc x = suce y*

= [text * 0 and + are overloaded: *}

1005 7] Ty o vpae U
nat”
= Comoe [Oupin] s sssion
s anEn bl T bl U T 1036 A

Slide 38

jEdit/PIDE

a0e P

| e T CRE M
Constants (43 Sue) are sspiayed daffercasly i
' Command click
il jumps to definition
ext 10 To st att agatos *
Bcciere thston ypesetatsel]
= [term "suc x = Succ y’ Command + hover
| for popup info
55 e e (0
e xe
[
Slide 39
iEdit/PIDE
-
< Jeext ¢ —
Yote tha.fres variablas (eg), bound variab ¢
Constants (43 Sue) are sispiayed differcosy i
processed

tern "Sue x = Suce y*
R M et i suc
text {+ Tooxspraymore types inside terns: *}
ldectare [(show_types]]

= [term "suc x = Suce y*

cext (¢ To suiten ott agasn:)
|declare [[show_types=false]]
term "suc x = Sute 3" unprocessed

= [text * 0 and + are overloaded:

1005 +] Ty o vpae st

Slide 40

Qe

NICTA

Qe

NICTA

20

e

NICTA

DEmMoO

Slide 41

e

Exercises

NICTA

=» Download and install Isabelle from
http://mirror.cse.unsw.edu.au/pub/isabelle/

=» Step through the demo files from the lecture web page

=> Write your own theory file, look at some theorems in the library, try 'find_theorems’

=» How many theorems can help you if you need to prove something like “Suc(Suc x))"?
=» What is the name of the theorem for associativity of addition of natural numbers in the
library?

Slide 42

21

