

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

more Isar

Content

→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3]
Term rewriting	$[4^a]$
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	[6, 7]
 Automated proof and disproof 	[7]
 Hoare logic, proofs about programs, refinement 	$[8^b, 9^c, 10]$
 Isar, locales 	[11 ^d ,12]

 $^{^{}a}$ a1 due; b a2 due; c session break; d a3 due

Last time ... Isar!

- → syntax: proof, qed, assume, from, show, have, next
- → modes: prove, state, chain
- → backward/forward reasoning
- → fix, obtain
- → abbreviations: this, then, thus, hence, with, ?thesis
- → moreover, ultimately
- → case distinction

Today

- → Datatypes in Isar
- → Calculational reasoning

DATATYPES IN ISAR


```
proof (cases term)
   case Constructor<sub>1</sub>
next
next
   case (Constructor<sub>k</sub> \vec{x})
   \cdots \vec{x} \cdots
qed
                  case (Constructor<sub>i</sub> \vec{x}) \equiv
                  fix \vec{x} assume Constructor<sub>i</sub> : "term = Constructor_i \vec{x}"
```



```
show P n
proof (induct n)
                    \equiv let ?case = P 0
  case 0
  show ?case
next
  case (Suc n) \equiv fix n assume Suc: P n
                        let ?case = P (Suc n)
  \cdots n \cdots
  show ?case
qed
```



```
show "\bigwedge x. A n \Longrightarrow P n"
proof (induct n)
                                    \equiv fix x assume 0: "A 0"
  case 0
                                        let ?case = "P 0"
  show ?case
next
  case (Suc n)
                                    \equiv fix n and x
                                        assume Suc: "\bigwedge x. A \ n \Longrightarrow P \ n"
                                                         "A (Suc n)"
  \cdots n \cdots
                                        let ?case = "P (Suc n)"
  show ?case
qed
```


DEMO: DATATYPES IN ISAR

CALCULATIONAL REASONING

The Goal

Prove:

$$x \cdot x^{-1} = 1$$

using: assoc:
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

left_inv:
$$x^{-1} \cdot x = 1$$

left_one:
$$1 \cdot x = x$$

The Goal

Prove:

$$x \cdot x^{-1} = 1 \cdot (x \cdot x^{-1})$$

$$\dots = 1 \cdot x \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot x^{-1} \cdot x \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot (x^{-1} \cdot x) \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot 1 \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot (1 \cdot x^{-1})$$

$$\dots = (x^{-1})^{-1} \cdot x^{-1}$$

$$\dots = 1$$

using: assoc: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

left_inv: $x^{-1} \cdot x = 1$

left_one: $1 \cdot x = x$

Can we do this in Isabelle?

→ Simplifier: too eager

→ Manual: difficult in apply style

→ Isar: with the methods we know, too verbose

Chains of equations

The Problem

$$a = b$$

$$\dots = c$$

$$\dots = a$$

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

Solution in Isar:

- → Keywords **also** and **finally** to delimit steps
- → ...: predefined schematic term variable, refers to right hand side of last expression
- → Automatic use of transitivity rules to connect steps

also/finally

have " $t_0 = t_1$ " [proof]

also

have "... = t_2 " [proof]

also

•

also

have " $\cdots = t_n$ " [proof]

finally

show P

— 'finally' pipes fact " $t_0 = t_n$ " into the proof

calculation register

"
$$t_0 = t_1$$
"

" $t_0 = t_2$ "

•

 $"t_0 = t_{n-1}"$

 $t_0 = t_n$

More about also

- \rightarrow Works for all combinations of =, \leq and <.
- → Uses all rules declared as [trans].
- → To view all combinations: print_trans_rules

Designing [trans] Rules

have = "
$$l_1 \odot r_1$$
" [proof] also have "... $\odot r_2$ " [proof] also

Anatomy of a [trans] rule:

 \rightarrow Usual form: plain transitivity $[l_1 \odot r_1; r_1 \odot r_2] \Longrightarrow l_1 \odot r_2$

 \rightarrow More general form: $\llbracket P \ l_1 \ r_1; Q \ r_1 \ r_2; A \rrbracket \Longrightarrow C \ l_1 \ r_2$

Examples:

 \rightarrow pure transitivity: $[a = b; b = c] \implies a = c$

 \rightarrow mixed: $[a \le b; b < c] \implies a < c$

 \rightarrow substitution: $\llbracket P \ a; a = b \rrbracket \Longrightarrow P \ b$

 \rightarrow antisymmetry: $[a < b; b < a] \Longrightarrow P$

ightharpoonup monotonicity: $[a = f \ b; b < c; \bigwedge x \ y. \ x < y \Longrightarrow f \ x < f \ y]] <math>\Longrightarrow a < f \ c$

DEMO

CODE GENERATION

We have

- → numbers, arithmetic
- → recursive datatypes
- → constant definitions, recursive functions
- → = a functional programming language
- → can be used to get fully verified programs

Executed using the simplifier. But:

- → slow, heavy-weight
- → does not run stand-alone (without Isabelle)

Translate HOL functional programming concepts, i.e.

- → datatypes
- → function definitions
- → inductive predicates

into a stand-alone code in:

- → SML
- → Ocaml
- → Haskell
- → Scala

Syntax


```
export_code <definition_names> in SML
module_name <module_name> file "<file path>"
```

export_code <definition_names> in Haskell
module_name <module_name> file "<directory path>"

Takes a space-separated list of constants for which code shall be generated.

Anything else needed for those is added implicitly. Generates ML stucture.

DEMO

Program Refinement

Aim: choosing appropriate code equations explicitly

Syntax:

lemma [code]:

t of equations on function_name>

Example: more efficient definition of fibonnacci function

DEMO

Inductive specifications turned into equational ones

Example:

```
append [] ys ys  append xs ys zs \Longrightarrow append (x \# xs) ys (x \# zs)
```

Syntax:

code_pred append.

DEMO

We have seen today ...

- → Datatypes in Isar
- → Calculations: also/finally
- → [trans]-rules
- → Code generation