
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski,
+ Thomas Sewell

{P’} . . . {Q’}
⇓

{P} . . . {Q}

Copyright NICTA 2013 1/16



Previously in this series

• Program verification, Hoare logic and invariants.
• Real C programs

• Side effects.
• Types (fixed-width words, arrays, structs)
• C memory (pointers, heap representation)
• Control flow (for, break, continue, return, etc)
• Undefined execution (null pointers etc, Simpl Guard)
• VCG

• C/SIMPL/VCG alternatives
• State monads & equalities
• AutoCorres

Copyright NICTA 2013 2/16



This time

Today’s lecture will not be a chaotic collection of demos.

Instead, we will cover some theory behind the mechanisms we’ve seen:

• Deep and shallow embeddings, computation on functions

• Varieties of Monads

• Abstraction and Refinement
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Deep and Shallow Embeddings

We’ve seen a few examples of program encodings in Isabelle/HOL.

A deep embedding encodes the syntax of the program.

A shallow embedding uses features of the host logic (e.g. Isabelle/HOL’s
λ and function type) to encode the semantics of the program.

This means that semantically equivalent programs cannot be
distinguished.
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Examples of Embeddings

• The simple imperative languages we’ve seen are deeply embedded

• The state monad language is shallowly embedded

• The SIMPL language is 80% deeply embedded
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Advantages of Shallow Embeddings

Advantages of shallow embeddings:

• Standard language features (case statements, variable passing)
don’t have to be reinvented.

• No need for an “executor” to convert syntax to semantics.

• Equivalent programs are equal, so equality-driven tools (like
Isabelle/HOL’s simplifier) can be applied.
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• No need for an “executor” to convert syntax to semantics.

• Equivalent programs are equal, so equality-driven tools (like
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do (do x ← f ; g x od; h x od) = do x ← f ; y ← gx ; hy od
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Advantages of Deep Embeddings

The advantage of a deep embedding is that computations on the
program can be defined within the logic.

The SIMPL Hoare logic VCG is defined as a term in Isabelle/HOL
vcg :: (σ set)⇒ (σ com)⇒ (σ set)⇒ bool

The Hoare rules are definitions
vcg Pre (Basic f ) Post ≡ (∀s ∈ Pre.f s ∈ Post)

The VCG is proven to be sound and complete. This would not be
possible for a shallowly embedded language.
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Grandiose observations

The SIMPL language is a poor example of a deeply embedded language.
The statement structure is deeply embedded, but all the expressions are
shallow.

For instance, you can’t define (in Isabelle/HOL) a program that collects
all the references to some variable.

The deep/shallow embedding issue exists in functional languages too.
Should functions in a Haskell EDSL have the function type? This
becomes an tradeoff between efficiency and flexibility.

The exception to the rule is LISP.
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On Monads

If you use Haskell, at some point you should think about the Monad
concept.

Monads are programs for
which the handy do-notation
makes sense.

Different kinds of monads
have different meanings for
“;”.

do

x <- f 1;

y <- g x 3 x;

unless (y > 2) panic;

z <- h x y;

case z of

Nothing -> return ()

Just v -> commit_value v
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Monad Demo

What kinds of monads can we think of?

DEMO
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Abstraction and Refinement

The AutoCorres tool produces a simplified version of a C/SIMPL
program. We can prove that this simplified program has desired
properties.

AutoCorres also proves that the C/SIMPL program is a refinement of the
simplified monadic program.

Refinement is the property that all observations of a concrete program
pc are also visible on an abstract program pa, or that properties proven of
pa hold of pc .
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Refinement

Formally, refinement, pc v pa, states that, for all traces of pc there exists
a trace of pa for which the observable parts of the state are the same.

Different models of computation come with different observations and
refinement orders.

Refinement is equivalent to Hoare triple implication
∀ P Q trs.{P} pa trs{Q} −→ {P} pc trs{Q}
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Refinement vs Abstraction

We are doing abstraction, the opposite of refinement. We started with a
concrete C program and semantics.

This is backwards compared to the formal software engineering
approach.

The formal idea is to start with a specification and derive an
implementation via refinement.
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Simulation

Refinement is often proven by forward simulation.
A trace of pc is related to one of pa step by step.

Given a state relation on the states of pa and pc and related states sa

and sc , we prove that every step forward to s′c has a related state s′a.
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4.5. The functional correctness proof
This section describes one of the major properties we have shown: functional correct-
ness, which was proved by showing formal refinement. We have formalised this prop-
erty for general state machines in Isabelle/HOL, and we instantiate each of the speci-
fications in the previous sections into this state-machine framework.
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Fig. 8. Forward Simulation.

We have also proved the well-known reduction of refinement to forward simulation,
illustrated in Figure 8: To show that a concrete state machine M2 refines an abstract
one M1, it is sufficient to show that for each transition in M2 that may lead from an
initial state s to a set of states s0, there exists a corresponding transition on the abstract
side from an abstract state � to a set �0 (they are sets because the machines may be
non-deterministic). The transitions correspond if there exists a relation R between the
states s and � such that for each concrete state in s0 there is an abstract one in �0 that
makes R hold between them again. This has to be shown for each transition with the
same overall relation R.
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Abstraction, Refinement and Hoare Triples

By abstraction we’re showing that pa can be used as a stand-in for pc .

This is related to our Hoare triple proofs.

{P} pc {Q} ≡ pc v (λs.if s ∈ P then choose Q else choose U)

Hoare triples also transport down refinement.
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Safety Properties

Refinement and Hoare triples are related to each other because they
characterise safety properties. Safety properties are properties
programs have if they never enter certain unsafe states.

Liveness properties are satisfied by programs if something good
eventually happens.

Confidentiality properties or information flow properties require the
observers of a program not to learn private information. These are paired
with integrity properties (which are safety properties) to give security
properties.

Safety properties are probably the important ones.
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Next time

The next lecture will leave program properties behind and focus on proof
methods.
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