
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski,
+ Thomas Sewell

{P’} . . . {Q’}
⇓

{P} . . . {Q}

Copyright NICTA 2013 1/12



Before the Break

• Program verification, Hoare logic and invariants.
• Real C programs

• Side effects.
• Types (fixed-width words, arrays, structs)
• C Memory (pointers, heap representation)
• Control flow (for, break, continue, return, etc)
• Undefined execution (null pointers etc, Simpl Guard)
• VCG

Copyright NICTA 2013 2/12



This time

Short summary of verification on C code: it gets ugly.

This week we consider alternatives:

• Why was C verification difficult?

• Kinds of alternatives

• Monads

• “AutoCorres”

Copyright NICTA 2013 3/12



Recap

Recap of C Verification

DEMO

(in which we aren’t going to get anywhere)

Copyright NICTA 2013 4/12



The Challenge

Are we doing it right?

This is a NICTA question especially, since all the C-related features in
Isabelle were developed for a NICTA project.

Copyright NICTA 2013 5/12



The Challenge

Are we doing it right?

This is a NICTA question especially, since all the C-related features in
Isabelle were developed for a NICTA project.

Copyright NICTA 2013 5/12



Approach

C Parser ⊨ P

We could try to change this diagram. There isn’t necessarily a single

good way to approach this problem. This differs to the pre/post condition
logic we’ve seen before.

Copyright NICTA 2013 6/12



Approach

C Parser ⊨ PVCG

We could try to change this diagram. There isn’t necessarily a single

good way to approach this problem. This differs to the pre/post condition
logic we’ve seen before.

Copyright NICTA 2013 6/12



Approach

C Parser ⊨ PVCG

We could try to change this diagram. There isn’t necessarily a single

good way to approach this problem. This differs to the pre/post condition
logic we’ve seen before.

Copyright NICTA 2013 6/12



The Alternatives

What else could we do? What are the alternatives?

• Assume a simpler dialect of C

• Use a higher level language, like Haskell, Java, ML or C#

• Cheat, focus on a simpler representation

• Do all the proof closer to the C program

• Generate the code from a simpler representation

• Simplify the program

Copyright NICTA 2013 7/12



The Alternatives

What else could we do? What are the alternatives?

• Assume a simpler dialect of C

• Use a higher level language, like Haskell, Java, ML or C#

• Cheat, focus on a simpler representation

• Do all the proof closer to the C program

• Generate the code from a simpler representation

• Simplify the program

Copyright NICTA 2013 7/12



The Alternatives

What else could we do? What are the alternatives?

• Assume a simpler dialect of C (Spark ADA?)

• Use a higher level language, like Haskell, Java, ML or C# (Haskell
House kernel)

• Cheat, focus on a simpler representation (everyone)

• Do all the proof closer to the C program (Verve, Verisoft XT)

• Generate the code from a simpler representation (4 colour theorem)

• Simplify the program (AutoCorres)

Copyright NICTA 2013 7/12



Functional Programming Plus

We can try implementing union and find directly in Isabelle’s logic
language.

DEMO

Passing globals (such as the array) around makes sense for now, but not
as our program grows. We can use the state monad to make this implicit.

DEMO

Copyright NICTA 2013 8/12



Functional Programming Plus

We can try implementing union and find directly in Isabelle’s logic
language.

DEMO

Passing globals (such as the array) around makes sense for now, but not
as our program grows. We can use the state monad to make this implicit.

DEMO

Copyright NICTA 2013 8/12



State Monads

All monads come with a return and �= function, and the state monad
also has a get and set.

Monads have a handy do notation. We’ll talk more about monads later
this week.

The state monad comes with some useful rewrite rules, for instance
return_bind:

do x ← return y ; f x od = f y

Copyright NICTA 2013 9/12



VCG on Monads

The state monad package also comes with a VCG equivalent called WP
(for Weakest Precondition).

The WP tool works like the wp calculation on imperative programs we
have seen, and the SIMPL VCG.

We’ll see an example in a moment.

Copyright NICTA 2013 10/12



AutoCorres

One way to relate C/SIMPL programs to monadic programs is
AutoCorres.

AutoCorres is an experimental tool developed at NICTA by David
Greenaway. AutoCorres simplifies C/SIMPL programs into equivalent

monadic programs. The monadic programs are sometimes much simpler.

DEMO
(from AutoCorres tests/examples/simple.c)

Copyright NICTA 2013 11/12



AutCorres plus

We can put everything together and try to prove that a C/SIMPL program
is equivalent to a hand-written monadic program.

DEMO (in which we aren’t going to get very far)

Copyright NICTA 2013 12/12



Next time . . . we’ll talk about the theory behind these tools.

Copyright NICTA 2013 13/12


