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Before the Break

• Program verification, Hoare logic and invariants.
• Real C programs

• Side effects.
• Types (fixed-width words, arrays, structs)
• C Memory (pointers, heap representation)
• Control flow (for, break, continue, return, etc)
• Undefined execution (null pointers etc, Simpl Guard)
• VCG
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This time

Short summary of verification on C code: it gets ugly.

This week we consider alternatives:

• Why was C verification difficult?

• Kinds of alternatives

• Monads

• “AutoCorres”
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Recap

Recap of C Verification

DEMO

(in which we aren’t going to get anywhere)
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The Challenge

Are we doing it right?

This is a NICTA question especially, since all the C-related features in
Isabelle were developed for a NICTA project.
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Approach

C Parser ⊨ P

We could try to change this diagram. There isn’t necessarily a single

good way to approach this problem. This differs to the pre/post condition
logic we’ve seen before.
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The Alternatives

What else could we do? What are the alternatives?

• Assume a simpler dialect of C

• Use a higher level language, like Haskell, Java, ML or C#

• Cheat, focus on a simpler representation

• Do all the proof closer to the C program

• Generate the code from a simpler representation

• Simplify the program
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The Alternatives

What else could we do? What are the alternatives?

• Assume a simpler dialect of C (Spark ADA?)

• Use a higher level language, like Haskell, Java, ML or C# (Haskell
House kernel)

• Cheat, focus on a simpler representation (everyone)

• Do all the proof closer to the C program (Verve, Verisoft XT)

• Generate the code from a simpler representation (4 colour theorem)

• Simplify the program (AutoCorres)
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Functional Programming Plus

We can try implementing union and find directly in Isabelle’s logic
language.

DEMO

Passing globals (such as the array) around makes sense for now, but not
as our program grows. We can use the state monad to make this implicit.

DEMO
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State Monads

All monads come with a return and �= function, and the state monad
also has a get and set.

Monads have a handy do notation. We’ll talk more about monads later
this week.

The state monad comes with some useful rewrite rules, for instance
return_bind:

do x ← return y ; f x od = f y
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VCG on Monads

The state monad package also comes with a VCG equivalent called WP
(for Weakest Precondition).

The WP tool works like the wp calculation on imperative programs we
have seen, and the SIMPL VCG.

We’ll see an example in a moment.
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AutoCorres

One way to relate C/SIMPL programs to monadic programs is
AutoCorres.

AutoCorres is an experimental tool developed at NICTA by David
Greenaway. AutoCorres simplifies C/SIMPL programs into equivalent

monadic programs. The monadic programs are sometimes much simpler.

DEMO
(from AutoCorres tests/examples/simple.c)
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AutCorres plus

We can put everything together and try to prove that a C/SIMPL program
is equivalent to a hand-written monadic program.

DEMO (in which we aren’t going to get very far)
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Next time . . . we’ll talk about the theory behind these tools.
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