
COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

C

Slide 1

Last Time

➜ Weakest preconditions

➜ Verification conditions

➜ Arrays, pointers

➜ Hard part: finding invariants

Slide 2

Copyright NICTA 2013, provided under Creative Commons Attribution License 1

Content

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3]

• Term rewriting [4a]

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6, 7]

• Automated proof and disproof [7]

• Hoare logic, proofs about programs, refinement [8b,9c,10]

• Isar, locales [11d,12]

aa1 due; ba2 due; csession break; da3 due

Slide 3

Program Verification

So far:

➜ have verified functional programs written in HOL

➜ learned about verifying imperative programs with Hoare Logic

Next few lectures:

➜ real C programs

Slide 4

Copyright NICTA 2013, provided under Creative Commons Attribution License 2

C

Main new problems in verifying C programs:

➜ expressions with side effects

➜ more control flow (do/while, for, break, continue, return)

➜ local variables and blocks

➜ functions & procedures

➜ concrete C data types

➜ C memory model and C pointers

C is not a nice language for reasoning.

Things are going to get ugly.

Slide 5

Approach

Approach for verifying C programs:

Translate into existing, clean imperative language in Isabelle.

Simpl:

➜ generic imperative language by Norbert Schirmer, TU Munich

➜ state space and basic expressions/statements can be instantiated

➜ has operational semantics

➜ Hoare logic with soundness and completeness proof

➜ automated vcg

➜ available from the Archive of Formal Proofs http://afp.sf.net

Slide 6

Copyright NICTA 2013, provided under Creative Commons Attribution License 3

Commands in Simpl

type_synonym ’s bexp = "’s set"

datatype (’s, ’p, ’f) com =

Skip

| Basic "’s => ’s"

| Spec "(’s * ’s) set"

| Seq "(’s ,’p, ’f) com" "(’s,’p,’f) com"

| Cond "’s bexp" "(’s,’p,’f) com" "(’s,’p,’f) com"

| While "’s bexp" "(’s,’p,’f) com"

| Call ’p

| DynCom "’s => (’s,’p,’f) com"

| Guard ’f "’s bexp" "(’s,’p,’f) com"

| Throw

| Catch "(’s,’p,’f) com" "(’s,’p,’f) com"

’s = state, ’p = procedure names, ’f = faults

Slide 7

DEMO: SIMPL

Slide 8

Copyright NICTA 2013, provided under Creative Commons Attribution License 4

Plan

Almost all of C can be translated into Simpl.

This is the plan for today.

Slide 9

Expressions with side effects

a = a * b; x = f(h); i = ++i - i++; x = f(h) + g(x);

➜ a = a * b — Fine: easy to translate into Isabelle

➜ x = f(h) — Fine: may have side effects, but can be translated sanely.

➜ i = ++i - i++ — Seriously? What does that even mean?

Make this an error, force programmer to write instead:

i0 = i; i++; i = i - i0; (or just i = 1)

➜ x = f(h) + g(x) — Ok if g and h do not have any side effects

=⇒ Prove all functions in expressions are side-effect free

Alternative: explicitly model nondeterministic order of execution in expressions.

Slide 10

Copyright NICTA 2013, provided under Creative Commons Attribution License 5

Control flow

do { c } while (condition);

Already can treat normal while-loops! Automatically translate into:

c; while (condition) { c }

Similarly:

for (init; condition; increment) { c }

becomes

init; while (condition) { c; increment; }

Slide 11

More control flow: break/continue

while (condition) {

foo;

if (Q) continue;

bar;

if (P) break;

}

Non-local control flow: continue goes to condition, break goes to end.

Can be modelled with exceptions:

➜ throw exception continue, catch at end of body.

➜ throw exception break, catch after loop.

Slide 12

Copyright NICTA 2013, provided under Creative Commons Attribution License 6

Exceptions

Do not exist in C, but can be used to model C constructs.

Exceptions can be modelled with two kinds kinds of state:

➜ normal states as before

➜ abrupt states — an exception was raised, normal commands are skipped.

Simpl commands:

➜ throw: switch to abrupt state

➜ try { c1 } catch { c2 }:

if c1 terminates abruptly, execute c2, otherwise execute only c1.

Use state to store which exception was thrown.

Slide 13

Break/continue

Break/continue example becomes:

try {

while (condition) {

try {

foo;

if (Q) { exception = ’continue’; throw; }

bar;

if (P) { exception = ’break’; throw; }

} catch { if (exception == ’continue’) SKIP else throw; }

}

} catch { if (exception == ’break’) SKIP else throw; }

This is not C any more. But it models C behaviour!

Need to be careful that only the translation has access to exception state.

Slide 14

Copyright NICTA 2013, provided under Creative Commons Attribution License 7

Return

if (P) return x;

foo;

return y;

Similar non-local control flow. Similar solution: use throw/try/catch

try {

if (P) { return_val = x; exception = ’return’; throw; }

foo;

return_val = y; exception = ’return’; throw;

} catch {

SKIP

}

Slide 15

Hoare Rules for Exceptions

Need new kind of Hoare triples to model normal and abrupt state:

{P} f {Q}, {E}

If P holds initially, and

➜ f terminates in state Normal s, then Q s;

➜ f terminates in state Abrupt s, then E s

Hoare Rules:

{Q} throw {P}, {Q}

{P} c1 {Q}, {R} {R} c2 {Q}, {E}

{P} try c1 catch c2 {Q}, {E}

{P} c1 {R}, {E} {R} c2 {Q}, {E}

{P} c1; c2 {Q}, {E}

(the other rules analogous)

Slide 16

Copyright NICTA 2013, provided under Creative Commons Attribution License 8

DEMO: CONTROL FLOW

Slide 17

Procedures in Simpl

Simpl com datatype

➜ has Call command

➜ but no procedure declaration

➜ and no local variables or parameters!

They can be simulated.

Slide 18

Copyright NICTA 2013, provided under Creative Commons Attribution License 9

Operational Semantics of Simpl

(types s, p, f as before, Semantic.thy)

datatype xstate = Normal s | Abrupt s | Fault f | Stuck

type synonym procs = p ⇒ com option

inductive exec :: procs ⇒ com ⇒ xstate ⇒ xstate ⇒ bool

Γ ⊢ (Skip,Normal s) ⇒ Normal s

Γ ⊢ (Throw,Normal s) ⇒ Abrupt s

. . .

[| Γ p = Some c; Γ ⊢ (c,Normal s) ⇒ s′ |] =⇒ Γ ⊢ (Call p,Normal s) ⇒ s′

Γ p = None =⇒ Γ ⊢ (Call p,Normal s) ⇒ Stuck

Slide 19

Formal procedure parameters and local variables

Simpl only has one global state space.

Basic idea:

➜ separate all locals and all globals

➜ keep both in one state space record

➜ on procedure entry, set formal parameters to actual values

➜ on procedure exit, restore previous values of all locals

Implemented using DynCom:

call init body restore result =

DynCom (λs. init; body; DynCom (λt. restore s t; result t))

Example: for procedure f(x) = { r = x + 2 }

y = CALL f(7) ≡ call (x = 7) (r = x + 2) (λs t. s (| globals := globals t |)) (λt. y = r t)

Slide 20

Copyright NICTA 2013, provided under Creative Commons Attribution License 10

Verifying Procedures

Simple idea: replace/inline body. Does not work for recursion.

Instead:

➜ introduce assumed specifications for procedures

➜ outside call: no specification known, user provided

➜ but: can assume current specification for recursive call

➜ works like induction

➜ is proved by induction on the recursive call depth

Slide 21

DEMO: PROCEDURES

Slide 22

Copyright NICTA 2013, provided under Creative Commons Attribution License 11

We have seen today ...

➜ C control flow

➜ Exceptions with Hoare logic rules

➜ C functions and procedures with Hoare logic rules

Slide 23

12

