
COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

{P} . . . {Q}

1

Last Time

➜ Syntax of a simple imperative language

➜ Operational semantics

➜ Program proof on operational semantics

➜ Hoare logic rules

➜ Soundness of Hoare logic

Copyright NICTA 2013, provided under Creative Commons Attribution License 2

Content

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3]

• Term rewriting [4a]

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6, 7]

• Automated proof and disproof [7]

• Hoare logic, proofs about programs, refinement [8b,9c,10]

• Isar, locales [11d,12]

aa1 due; ba2 due; csession break; da3 due

Copyright NICTA 2013, provided under Creative Commons Attribution License 3

Automation?

Last time: Hoare rule application is nicer than using operational semantic.

BUT:

➜ it’s still kind of tedious

➜ it seems boring & mechanical

Automation?

Copyright NICTA 2013, provided under Creative Commons Attribution License 4

Invariant

Problem: While – need creativity to find right (invariant) P

Solution:

➜ annotate program with invariants

➜ then, Hoare rules can be applied automatically

Example:
{M = 0 ∧N = 0}

WHILE M 6= a INV {N = M ∗ b} DO N := N + b;M := M + 1 OD

{N = a ∗ b}

Copyright NICTA 2013, provided under Creative Commons Attribution License 5

Weakest Preconditions

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q

pre (x := a) Q = λσ. Q(σ(x := aσ))

pre (c1; c2) Q = pre c1 (pre c2 Q)

pre (IF b THEN c1 ELSE c2) Q = λσ. (b −→ pre c1 Q σ) ∧

(¬b −→ pre c2 Q σ)

pre (WHILE b INV I DO c OD) Q = I

Copyright NICTA 2013, provided under Creative Commons Attribution License 6

Verification Conditions

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True

vc (x := a) Q = True

vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))

vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q

vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧

vc c I

vc c Q ∧ (P =⇒ pre c Q) =⇒ {P} c {Q}

Copyright NICTA 2013, provided under Creative Commons Attribution License 7

Syntax Tricks

➜ x := λσ. 1 instead of x := 1 sucks

➜ {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:

➜ declare program variables with each Hoare triple

• nice, usual syntax
• works well if you state full program and only use vcg

➜ separate program variables from Hoare triple (use extensible records),

indicate usage as function syntactically

• more syntactic overhead
• program pieces compose nicely

Copyright NICTA 2013, provided under Creative Commons Attribution License 8

DEMO

Copyright NICTA 2013, provided under Creative Commons Attribution License 9

Arrays

Depending on language, model arrays as functions:

➜ Array access = function application:

a[i] = a i

➜ Array update = function update:

a[i] :== v = a :== a(i:= v)

Use lists to express length:

➜ Array access = nth:

a[i] = a ! i

➜ Array update = list update:

a[i] :== v = a :== a[i:= v]

➜ Array length = list length:

a.length = length a

Copyright NICTA 2013, provided under Creative Commons Attribution License 10

Pointers

Choice 1

datatype ref = Ref int | Null

types heap = int ⇒ val

datatype val = Int int | Bool bool | Struct x int int bool | . . .

➜ hp :: heap, p :: ref

➜ Pointer access: *p = the Int (hp (the addr p))

➜ Pointer update: *p :== v = hp :== hp ((the addr p) := v)

➜ a bit klunky

➜ gets even worse with structs

➜ lots of value extraction (the Int) in spec and program

Copyright NICTA 2013, provided under Creative Commons Attribution License 11

Pointers

Choice 2 (Burstall ’72, Bornat ’00)

struct with next pointer and element

datatype ref = Ref int | Null

types next hp = int ⇒ ref

types elem hp = int ⇒ int

➜ next :: next hp, elem :: elem hp, p :: ref

➜ Pointer access: p→next = next (the addr p)

➜ Pointer update: p→next :== v = next :== next ((the addr p) := v)

➜ a separate heap for each struct field

➜ buys you p→next 6= p→elem automatically (aliasing)

➜ still assumes type safe language

Copyright NICTA 2013, provided under Creative Commons Attribution License 12

DEMO

Copyright NICTA 2013, provided under Creative Commons Attribution License 13

We have seen today ...

➜ Weakest precondition

➜ Verification conditions

➜ Example program proofs

➜ Arrays, pointers

Copyright NICTA 2013, provided under Creative Commons Attribution License 14

