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Last Time

➜ Syntax of a simple imperative language

➜ Operational semantics

➜ Program proof on operational semantics

➜ Hoare logic rules

➜ Soundness of Hoare logic
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Content

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3]

• Term rewriting [4a]

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6, 7]

• Automated proof and disproof [7]

• Hoare logic, proofs about programs, refinement [8b,9c,10]

• Isar, locales [11d,12]

aa1 due; ba2 due; csession break; da3 due
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Automation?

Last time: Hoare rule application is nicer than using operational semantic.

BUT:

➜ it’s still kind of tedious

➜ it seems boring & mechanical

Automation?
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Invariant

Problem: While – need creativity to find right (invariant) P

Solution:

➜ annotate program with invariants

➜ then, Hoare rules can be applied automatically

Example:
{M = 0 ∧N = 0}

WHILE M 6= a INV {N = M ∗ b} DO N := N + b;M := M + 1 OD

{N = a ∗ b}
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Weakest Preconditions

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q

pre (x := a) Q = λσ. Q(σ(x := aσ))

pre (c1; c2) Q = pre c1 (pre c2 Q)

pre (IF b THEN c1 ELSE c2) Q = λσ. (b −→ pre c1 Q σ) ∧

(¬b −→ pre c2 Q σ)

pre (WHILE b INV I DO c OD) Q = I
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Verification Conditions

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True

vc (x := a) Q = True

vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))

vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q

vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧

vc c I

vc c Q ∧ (P =⇒ pre c Q) =⇒ {P} c {Q}
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Syntax Tricks

➜ x := λσ. 1 instead of x := 1 sucks

➜ {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:

➜ declare program variables with each Hoare triple

• nice, usual syntax
• works well if you state full program and only use vcg

➜ separate program variables from Hoare triple (use extensible records),

indicate usage as function syntactically

• more syntactic overhead
• program pieces compose nicely
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DEMO
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Arrays

Depending on language, model arrays as functions:

➜ Array access = function application:

a[i] = a i

➜ Array update = function update:

a[i] :== v = a :== a(i:= v)

Use lists to express length:

➜ Array access = nth:

a[i] = a ! i

➜ Array update = list update:

a[i] :== v = a :== a[i:= v]

➜ Array length = list length:

a.length = length a
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Pointers

Choice 1

datatype ref = Ref int | Null

types heap = int ⇒ val

datatype val = Int int | Bool bool | Struct x int int bool | . . .

➜ hp :: heap, p :: ref

➜ Pointer access: *p = the Int (hp (the addr p))

➜ Pointer update: *p :== v = hp :== hp ((the addr p) := v)

➜ a bit klunky

➜ gets even worse with structs

➜ lots of value extraction (the Int) in spec and program
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Pointers

Choice 2 (Burstall ’72, Bornat ’00)

struct with next pointer and element

datatype ref = Ref int | Null

types next hp = int ⇒ ref

types elem hp = int ⇒ int

➜ next :: next hp, elem :: elem hp, p :: ref

➜ Pointer access: p→next = next (the addr p)

➜ Pointer update: p→next :== v = next :== next ((the addr p) := v)

➜ a separate heap for each struct field

➜ buys you p→next 6= p→elem automatically (aliasing)

➜ still assumes type safe language
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DEMO
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We have seen today ...

➜ Weakest precondition

➜ Verification conditions

➜ Example program proofs

➜ Arrays, pointers
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