

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

$${P} ... {Q}$$

Content

→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3]
Term rewriting	$[4^a]$
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	[6, 7]
 Automated proof and disproof 	[7]
 Hoare logic, proofs about programs, refinement 	$[8^b, 9^c, 10]$
Isar, locales	[11 ^d ,12]

 $^{^{}a}$ a1 due; b a2 due; c session break; d a3 due

A CRASH COURSE IN SEMANTICS

Commands:

datatype com = SKIP

Assign vname aexp $(_ := _)$

Semi com com (_; _)

Cond bexp com com (IF _ THEN _ ELSE _)

While bexp com (WHILE _ DO _ OD)

types vname = string

types state = $vname \Rightarrow nat$

types $aexp = state \Rightarrow nat$

types bexp = state \Rightarrow bool

Example Program

Usual syntax:

$$B:=1;$$
 WHILE $A \neq 0$ DO
$$B:=B*A;$$

$$A:=A-1$$
 OD

Expressions are functions from state to bool or nat:

$$B:=(\lambda\sigma.\ 1);$$
 WHILE $(\lambda\sigma.\ \sigma\ A\neq 0)$ DO
$$B:=(\lambda\sigma.\ \sigma\ B*\sigma\ A);$$
 $A:=(\lambda\sigma.\ \sigma\ A-1)$ OD

What does it do?

So far we have defined:

- → Syntax of commands and expressions
- → State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

- → A wide field of its own
- → Some choices:
 - Operational (inductive relations, big step, small step)
 - Denotational (programs as functions on states, state transformers)
 - Axiomatic (pre-/post conditions, Hoare logic)

$$\overline{\langle \mathsf{SKIP}, \sigma \rangle o \sigma}$$

$$\frac{e \ \sigma = v}{\langle \mathsf{x} := \mathsf{e}, \sigma \rangle \to \sigma[x \mapsto v]}$$

$$\frac{\langle c_1, \sigma \rangle \to \sigma' \quad \langle c_2, \sigma' \rangle \to \sigma''}{\langle c_1; c_2, \sigma \rangle \to \sigma''}$$

$$\frac{b \ \sigma = \mathsf{True} \quad \langle c_1, \sigma \rangle \to \sigma'}{\langle \mathsf{IF} \ b \ \mathsf{THEN} \ c_1 \ \mathsf{ELSE} \ c_2, \sigma \rangle \to \sigma'}$$

$$\frac{b \ \sigma = \mathsf{False} \quad \langle c_2, \sigma \rangle \to \sigma'}{\langle \mathsf{IF} \ b \ \mathsf{THEN} \ c_1 \ \mathsf{ELSE} \ c_2, \sigma \rangle \to \sigma'}$$

$$\frac{b \; \sigma = \mathsf{False}}{\langle \mathsf{WHILE} \; b \; \mathsf{DO} \; c \; \mathsf{OD}, \sigma \rangle \to \sigma}$$

$$\frac{b \ \sigma = \mathsf{True} \quad \langle c, \sigma \rangle \to \sigma' \quad \langle \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD}, \sigma' \rangle \to \sigma''}{\langle \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD}, \sigma \rangle \to \sigma''}$$

DEMO: THE DEFINITIONS IN ISABELLE

Now we know:

→ What programs are: Syntax

→ On what they work: State

→ How they work: Semantics

So we can prove properties about programs

Example:

Show that example program from slide 5 implements the factorial.

lemma
$$\langle \text{factorial}, \sigma \rangle \rightarrow \sigma' \Longrightarrow \sigma' B = \text{fac } (\sigma A)$$

(where fac
$$0 = 1$$
, fac (Suc n) = (Suc n) * fac n)

DEMO: EXAMPLE PROOF

Too tedious

Induction needed for each loop

Is there something easier?

Floyd/Hoare

Idea: describe meaning of program by pre/post conditions

Examples:

$$\begin{cases} \mathsf{True} \} & x := 2 \quad \{x = 2\} \\ \{y = 2\} \quad x := 21 * y \quad \{x = 42\} \end{cases}$$

$$\{x = n\} \quad \mathsf{IF} \ y < 0 \ \mathsf{THEN} \ x := x + y \ \mathsf{ELSE} \ x := x - y \quad \{x = n - |y|\}$$

$$\{A = n\} \quad \mathsf{factorial} \quad \{B = \mathsf{fac} \ n\}$$

Proofs: have rules that directly work on such triples

Meaning of a Hoare-Triple

$$\{P\}$$
 c $\{Q\}$

What are the assertions P and Q?

- → Here: again functions from state to bool (shallow embedding of assertions)
- → Other choice: syntax and semantics for assertions (deep embedding)

What does $\{P\}$ c $\{Q\}$ mean?

Partial Correctness:

$$\models \{P\} \ c \ \{Q\} \equiv \forall \sigma \ \sigma'. \ P \ \sigma \land \langle c, \sigma \rangle \rightarrow \sigma' \longrightarrow Q \ \sigma'$$

Total Correctness:

$$\models \{P\} \ c \ \{Q\} \quad \equiv \quad (\forall \sigma \ \sigma'. \ P \ \sigma \land \langle c, \sigma \rangle \to \sigma' \longrightarrow Q \ \sigma') \land (\forall \sigma. \ P \ \sigma \longrightarrow \exists \sigma'. \ \langle c, \sigma \rangle \to \sigma')$$

This lecture: partial correctness only (easier)

Hoare Rules

$$\overline{\{P\} \quad \mathsf{SKIP} \quad \{P\}} \qquad \overline{\{P[x \mapsto e]\} \quad x := e \quad \{P\}}$$

$$\frac{\{P\}\ c_1\ \{R\}\ \{R\}\ c_2\ \{Q\}}{\{P\}\ c_1; c_2\ \{Q\}}$$

$$\frac{\{P \wedge b\} \ c_1 \ \{Q\} \quad \{P \wedge \neg b\} \ c_2 \ \{Q\}}{\{P\} \quad \mathsf{IF} \ b \ \mathsf{THEN} \ c_1 \ \mathsf{ELSE} \ c_2 \quad \{Q\}}$$

$$\frac{\{P \wedge b\} \ c \ \{P\} \quad P \wedge \neg b \Longrightarrow Q}{\{P\} \quad \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD} \quad \{Q\}}$$

$$\frac{P \Longrightarrow P' \quad \{P'\} \ c \ \{Q'\} \quad Q' \Longrightarrow Q}{\{P\} \quad c \quad \{Q\}}$$

Hoare Rules

Are the Rules Correct?

Soundness: $\vdash \{P\} \ c \ \{Q\} \Longrightarrow \models \{P\} \ c \ \{Q\}$

Proof: by rule induction on $\vdash \{P\}$ c $\{Q\}$

Demo: Hoare Logic in Isabelle