

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Slide 1

Contant	
Content	NICTA
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
Lambda Calculus, natural deduction	[1,2]
Higher Order Logic	[3]
Term rewriting	[4 ^a]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	$[6^b, 7]$
 Code generation, type classes 	[7]
 Hoare logic, proofs about programs, refinement 	$[8,9^c,10^d]$
Isar, locales	[11,12]

^aa1 due; ^ba2 due; ^csession break; ^da3 due

Slide 2

Datatypes

Example:

datatype 'a list = Nil | Cons 'a "a list"

Properties:

→ Constructors:

Nil :: 'a list
Cons :: 'a
$$\Rightarrow$$
 'a list \Rightarrow 'a list

→ Distinctness: Nil ≠ Cons x xs

→ Injectivity: (Cons x xs = Cons y ys) = $(x = y \land xs = ys)$

Slide 3

The General Case

lacktriangledown Constructors: $\mathsf{C}_i :: \tau_{i,1} \ \Rightarrow \ \ldots \ \Rightarrow \ \tau_{i,n_i} \ \Rightarrow (\alpha_1,\ldots,\alpha_n) \ au$

ightharpoonup Distinctness: $C_i \ldots \neq C_j \ldots$ if $i \neq j$

 $\Rightarrow \ \, \mathsf{Injectivity:} \ \, (\mathsf{C}_i \ x_1 \dots x_{n_i} = \mathsf{C}_i \ y_1 \dots y_{n_i}) = (x_1 = y_1 \wedge \dots \wedge x_{n_i} = y_{n_i})$

Distinctness and Injectivity applied automatically

Slide 4

pprigit NICTA 2013, provided under Creative Commons Attribution License 2

Copyright NICTA 2013, provided under Creative Commons Attribution License 2

How is this Type Defined?

datatype 'a list = Nil | Cons 'a "'a list"

→ internally defined using typedef

→ hence: describes a set

→ set = trees with constructors as nodes

→ inductive definition to characterise which trees belong to datatype

More detail: HOL/Datatype.thy

Slide 5

Datatype Limitations

Must be definable as set.

→ Infinitely branching ok.

→ Mutually recursive ok.

→ Strictly positive (right of function arrow) occurrence ok.

Not ok:

$$\begin{array}{lll} \textbf{datatype t} & = & C \ (t \Rightarrow bool) \\ & | & D \ ((bool \Rightarrow t) \Rightarrow bool) \\ & | & E \ ((t \Rightarrow bool) \Rightarrow bool) \\ \end{array}$$

Because: Cantor's theorem (α set is larger than α)

Slide 6

Case

Every datatype introduces a case construct, e.g.

(case
$$xs$$
 of $[] \Rightarrow \dots \mid y \# ys \Rightarrow \dots y \dots ys \dots)$

In general: one case per constructor

→ Nested patterns allowed: x#y#zs

→ Dummy and default patterns with _

→ Binds weakly, needs () in context

Slide 7

Cases

apply (case_tac t)

creates k subgoals

$$[t = C_i \ x_1 \dots x_p; \dots] \Longrightarrow \dots$$

one for each constructor C_i

DEMO

Slide 9

RECURSION

Slide 10

Why nontermination can be harmful

How about f x = f x + 1?

Subtract f x on both sides.

All functions in HOL must be total

Slide 11

Primitive Recursion

primrec guarantees termination structurally

Example primrec def:

primrec app :: ""a list \Rightarrow 'a list" where "app Nil ys = ys" | "app (Cons x xs) ys = Cons x (app xs ys)"

The General Case

If τ is a datatype (with constructors C_1, \ldots, C_k) then $f :: \tau \Rightarrow \tau'$ can be defined by **primitive recursion**:

$$f(C_1 y_{1,1} \dots y_{1,n_1}) = r_1$$

$$\vdots$$

$$f(C_k y_{k,1} \dots y_{k,n_k}) = r_k$$

The recursive calls in r_i must be **structurally smaller** (of the form f a_1 ... $y_{i,j}$... a_p)

Slide 13

How does this Work?

primrec just fancy syntax for a recursion operator

"app (Cons x xs) ys = Cons x (app xs ys)"

Slide 14

list_rec

Defined: automatically, first inductively (set), then by epsilon

$$\frac{(xs,xs') \in \mathsf{list_rel}\; f_1\; f_2}{(\mathsf{Nil},f_1) \in \mathsf{list_rel}\; f_1\; f_2} \qquad \frac{(xs,xs') \in \mathsf{list_rel}\; f_1\; f_2}{(\mathsf{Cons}\; x\; xs,f_2\; x\; xs\; xs') \in \mathsf{list_rel}\; f_1\; f_2}$$

list_rec f_1 f_2 $xs \equiv$ SOME y. $(xs, y) \in$ list_rel f_1 f_2

Automatic proof that set def indeed is total function (the equations for list_rec are lemmas!)

Slide 15

PREDEFINED DATATYPES

nat is a datatype

 $\textbf{datatype} \ \mathsf{nat} = 0 \mid \mathsf{Suc} \ \mathsf{nat}$

Functions on nat definable by primrec!

primrec

$$\begin{array}{lll} f \ 0 & = & \dots \\ f \ (\operatorname{Suc} n) & = & \dots f \ n \ \dots \end{array}$$

Slide 17

Option

datatype 'a option = None | Some 'a

Important application:

$$\begin{tabular}{lll} \begin{tabular}{lll} \begin{$$

Example:

primrec lookup :: 'k
$$\Rightarrow$$
 ('k \times 'v) list \Rightarrow 'v option where lookup k [] = None |

lookup k (x #xs) = (if fst x = k then Some (snd x) else lookup k xs)

Slide 18

DEMO: PRIMREC

Slide 19

O • NICTA

INDUCTION

Structural induction

P xs holds for all lists xs if

- → P Nil
- \rightarrow and for arbitrary x and xs, P $xs \Longrightarrow P$ (x#xs)

Induction theorem list.induct:

 $\llbracket P \; [] ; \land a \; list. \; P \; list \Longrightarrow P \; (a\#list) \rrbracket \Longrightarrow P \; list$

- → General proof method for induction: (induct x)
 - x must be a free variable in the first subgoal.
 - type of x must be a datatype.

Slide 21

Basic heuristics

Theorems about recursive functions are proved by induction

 $\label{eq:continuous} \mbox{Induction on argument number } i \mbox{ of } f \\ \mbox{if } f \mbox{ is defined by recursion on argument number } i \\ \mbox{}$

Slide 22

Example

A tail recursive list reverse:

primrec itrev :: 'a list \Rightarrow 'a list \Rightarrow 'a list where

itrev [] ys = ys | itrev (x#xs) ys = itrev xs (x#ys)

lemma itrev xs [] = rev xs

Slide 23

DEMO: PROOF ATTEMPT

Generalisation

Replace constants by variables

lemma itrev $xs \ ys = \text{rev} \ xs@ys$

Quantify free variables by ∀ (except the induction variable)

lemma $\forall ys.$ itrev $xs\ ys = \text{rev } xs@ys$

Slide 25

We have seen today ...

NICTA

- → Datatypes
- → Primitive recursion
- → Case distinction
- → Structural Induction