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Content

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3]

• Term rewriting [4a]

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6b, 7]

• Code generation, type classes [7]

• Hoare logic, proofs about programs, refinement [8,9c,10d]

• Isar, locales [11,12]

aa1 due; ba2 due; csession break; da3 due
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Last Time on HOL

➜ Defining HOL

➜ Higher Order Abstract Syntax

➜ Deriving proof rules

➜ More automation
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The Three Basic Ways of Introducing Theorems

➜ Axioms:

Expample: axioms refl: ”t = t”

Do not use. Evil. Can make your logic inconsistent.

➜ Definitions:

Example: definition inj where ”inj f ≡ ∀x y. f x = f y −→ x = y”

Introduces a new lemma called inj def.

➜ Proofs:

Example: lemma ”inj (λx. x+ 1)”

The harder, but safe choice.
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The Three Basic Ways of Introducing Types

➜ typedecl: by name only

Example: typedecl names

Introduces new type names without any further assumptions

➜ type synonym: by abbreviation

Example: type synonym α rel = ”α ⇒ α ⇒ bool”

Introduces abbreviation rel for existing type α ⇒ α ⇒ bool

Type abbreviations are immediately expanded internally

➜ typedef: by definiton as a set

Example: typedef new type = ”{some set}” <proof>

Introduces a new type as a subset of an existing type.

The proof shows that the set on the rhs in non-empty.

More on typedef in later lectures.
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TERM REWRITING
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The Problem

Given a set of equations

l1 = r1

l2 = r2
...

ln = rn

does equation l = r hold?

Applications in:

➜ Mathematics (algebra, group theory, etc)

➜ Functional Programming (model of execution)

➜ Theorem Proving (dealing with equations, simplifying statements)
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Term Rewriting: The Idea

use equations as reduction rules

l1 −→ r1

l2 −→ r2
...

ln −→ rn

decide l = r by deciding l
∗

←→ r
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Arrow Cheat Sheet

0
−→ = {(x, y)|x = y} identity
n+1
−→ =

n
−→ ◦ −→ n+1 fold composition

+
−→ =

⋃
i>0

i
−→ transitive closure

∗

−→ =
+
−→ ∪

0
−→ reflexive transitive closure

=
−→ = −→ ∪

0
−→ reflexive closure

−1
−→ = {(y, x)|x −→ y} inverse

←− =
−1
−→ inverse

←→ = ←− ∪ −→ symmetric closure

+
←→ =

⋃
i>0

i
←→ transitive symmetric closure

∗

←→ =
+
←→ ∪

0
←→ reflexive transitive symmetric closure
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How to Decide l
∗

←→ r

Same idea as for β: look for n such that l
∗

−→ n and r
∗

−→ n

Does this always work?

If l
∗

−→ n and r
∗

−→ n then l
∗

←→ r. Ok.

If l
∗

←→ r, will there always be a suitable n? No!

Example:

Rules: f x −→ a, g x −→ b, f (g x) −→ b

f x
∗

←→ g x because f x −→ a←− f (g x) −→ b←− g x

But: f x −→ a and g x −→ b and a, b in normal form

Works only for systems with Church-Rosser property:

l
∗

←→ r =⇒ ∃n. l
∗

−→ n ∧ r
∗

−→ n

Fact: −→ is Church-Rosser iff it is confluent.
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Confluence

s

x y

t

∗ ∗

∗∗

Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence

s

x y

t
∗∗

Fact: local confluence and termination =⇒ confluence
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Termination

−→ is terminating if there are no infinite reduction chains

−→ is normalizing if each element has a normal form

−→ is convergent if it is terminating and confluent

Example:

−→β in λ is not terminating, but confluent

−→β in λ→ is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable
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When is −→ Terminating?

Basic idea: when each rule application makes terms simpler in some way.

More formally: −→ is terminating when

there is a well founded order < on terms for which s < t whenever t −→ s

(well founded = no infinite decreasing chains a1 > a2 > . . .)

Example: f (g x) −→ g x, g (f x) −→ f x

This system always terminates. Reduction order:

s <r t iff size(s) < size(t) with

size(s) = number of function symbols in s

➀ Both rules always decrease size by 1 when applied to any term t

➁ <r is well founded, because < is well founded on IN
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Termination in Practice

In practice: often easier to consider just the rewrite rules by themselves,

rather than their application to an arbitrary term t.

Show for each rule li = ri, that ri < li.

Example:

g x < f (g x) and f x < g (f x)

Requires t to become smaller whenever any subterm of t is made smaller.

Formally:

Requires < to be monotonic with respect to the structure of terms:

s < t −→ u[s] < u[t].

True for most orders that don’t treat certain parts of terms as special cases.
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Example Termination Proof

Problem: Rewrite formulae containing ¬, ∧, ∨ and −→, so that they don’t

contain any implications and ¬ is applied only to variables and constants.

Rewrite Rules:

➜ Remove implications:

imp: (A −→ B) = (¬A ∨B)

➜ Push ¬s down past other operators:

notnot: (¬¬P ) = P

notand: (¬(A ∧B)) = (¬A ∨ ¬B)

notor: (¬(A ∨B)) = (¬A ∧ ¬B)

We show that the rewrite system defined by these rules is terminating.
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Order on Terms

Each time one of our rules is applied, either:

➜ an implication is removed, or

➜ something that is not a ¬ is hoisted upwards in the term.

This suggests a 2-part order, <r: s <r t iff:

➜ num imps s < num imps t, or

➜ num imps s = num imps t ∧ osize s < osize t.

Let:

➜ s <i t ≡ num imps s < num imps t and

➜ s <n t ≡ osize s < osize t

Then <i and <n are both well-founded orders (since both functions return nats).

<r is the lexicographic order over <i and <n. <r is well-founded since <i and

<n are both well-founded.
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Order Decreasing

imp clearly decreases num imps.

osize adds up all non-¬ operators and variables/constants, weights each one

according to its depth within the term.

osize′ c acm = 2acm

osize′ (¬P ) acm = osize′ P (acm+ 1)

osize′ (P ∧Q) acm = 2acm + (osize′ P (acm+ 1)) + (osize′ Q (acm+ 1))

osize′ (P ∨Q) acm = 2acm + (osize′ P (acm+ 1)) + (osize′ Q (acm+ 1))

osize′ (P −→ Q) acm = 2acm + (osize′ P (acm+ 1)) + (osize′ Q (acm+ 1))

osize P = osize′ P 0

The other rules decrease the depth of the things osize counts, so decrease osize.
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Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called Simplifier

apply simp

➜ uses simplification rules

➜ (almost) blindly from left to right

➜ until no rule is applicable.

termination: not guaranteed
(may loop)

confluence: not guaranteed
(result may depend on which rule is used first)
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Control

➜ Equations turned into simplification rules with [simp] attribute

➜ Adding/deleting equations locally:

apply (simp add: <rules>) and apply (simp del: <rules>)

➜ Using only the specified set of equations:

apply (simp only: <rules>)
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DEMO
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We have seen today...

➜ Equations and Term Rewriting

➜ Confluence and Termination of reduction systems

➜ Term Rewriting in Isabelle
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Exercises

➜ Show, via a pen-and-paper proof, that the osize function is monotonic with respect to

the structure of terms from that example.
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