
COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

−→
1



Content

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3]

• Term rewriting [4a]

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6b, 7]

• Code generation, type classes [7]

• Hoare logic, proofs about programs, refinement [8,9c,10d]

• Isar, locales [11,12]

aa1 due; ba2 due; csession break; da3 due

Copyright NICTA 2013, provided under Creative Commons Attribution License 2



Last Time on HOL

➜ Defining HOL

➜ Higher Order Abstract Syntax

➜ Deriving proof rules

➜ More automation

Copyright NICTA 2013, provided under Creative Commons Attribution License 3



The Three Basic Ways of Introducing Theorems

➜ Axioms:

Expample: axioms refl: ”t = t”

Do not use. Evil. Can make your logic inconsistent.

➜ Definitions:

Example: definition inj where ”inj f ≡ ∀x y. f x = f y −→ x = y”

Introduces a new lemma called inj def.

➜ Proofs:

Example: lemma ”inj (λx. x+ 1)”

The harder, but safe choice.

Copyright NICTA 2013, provided under Creative Commons Attribution License 4



The Three Basic Ways of Introducing Types

➜ typedecl: by name only

Example: typedecl names

Introduces new type names without any further assumptions

➜ type synonym: by abbreviation

Example: type synonym α rel = ”α ⇒ α ⇒ bool”

Introduces abbreviation rel for existing type α ⇒ α ⇒ bool

Type abbreviations are immediately expanded internally

➜ typedef: by definiton as a set

Example: typedef new type = ”{some set}” <proof>

Introduces a new type as a subset of an existing type.

The proof shows that the set on the rhs in non-empty.

More on typedef in later lectures.

Copyright NICTA 2013, provided under Creative Commons Attribution License 5



TERM REWRITING

Copyright NICTA 2013, provided under Creative Commons Attribution License 6



The Problem

Given a set of equations

l1 = r1

l2 = r2
...

ln = rn

does equation l = r hold?

Applications in:

➜ Mathematics (algebra, group theory, etc)

➜ Functional Programming (model of execution)

➜ Theorem Proving (dealing with equations, simplifying statements)

Copyright NICTA 2013, provided under Creative Commons Attribution License 7



Term Rewriting: The Idea

use equations as reduction rules

l1 −→ r1

l2 −→ r2
...

ln −→ rn

decide l = r by deciding l
∗

←→ r

Copyright NICTA 2013, provided under Creative Commons Attribution License 8



Arrow Cheat Sheet

0
−→ = {(x, y)|x = y} identity
n+1
−→ =

n
−→ ◦ −→ n+1 fold composition

+
−→ =

⋃
i>0

i
−→ transitive closure

∗

−→ =
+
−→ ∪

0
−→ reflexive transitive closure

=
−→ = −→ ∪

0
−→ reflexive closure

−1
−→ = {(y, x)|x −→ y} inverse

←− =
−1
−→ inverse

←→ = ←− ∪ −→ symmetric closure

+
←→ =

⋃
i>0

i
←→ transitive symmetric closure

∗

←→ =
+
←→ ∪

0
←→ reflexive transitive symmetric closure

Copyright NICTA 2013, provided under Creative Commons Attribution License 9



How to Decide l
∗

←→ r

Same idea as for β: look for n such that l
∗

−→ n and r
∗

−→ n

Does this always work?

If l
∗

−→ n and r
∗

−→ n then l
∗

←→ r. Ok.

If l
∗

←→ r, will there always be a suitable n? No!

Example:

Rules: f x −→ a, g x −→ b, f (g x) −→ b

f x
∗

←→ g x because f x −→ a←− f (g x) −→ b←− g x

But: f x −→ a and g x −→ b and a, b in normal form

Works only for systems with Church-Rosser property:

l
∗

←→ r =⇒ ∃n. l
∗

−→ n ∧ r
∗

−→ n

Fact: −→ is Church-Rosser iff it is confluent.

Copyright NICTA 2013, provided under Creative Commons Attribution License 10



Confluence

s

x y

t

∗ ∗

∗∗

Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence

s

x y

t
∗∗

Fact: local confluence and termination =⇒ confluence

Copyright NICTA 2013, provided under Creative Commons Attribution License 11



Termination

−→ is terminating if there are no infinite reduction chains

−→ is normalizing if each element has a normal form

−→ is convergent if it is terminating and confluent

Example:

−→β in λ is not terminating, but confluent

−→β in λ→ is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

Copyright NICTA 2013, provided under Creative Commons Attribution License 12



When is −→ Terminating?

Basic idea: when each rule application makes terms simpler in some way.

More formally: −→ is terminating when

there is a well founded order < on terms for which s < t whenever t −→ s

(well founded = no infinite decreasing chains a1 > a2 > . . .)

Example: f (g x) −→ g x, g (f x) −→ f x

This system always terminates. Reduction order:

s <r t iff size(s) < size(t) with

size(s) = number of function symbols in s

➀ Both rules always decrease size by 1 when applied to any term t

➁ <r is well founded, because < is well founded on IN

Copyright NICTA 2013, provided under Creative Commons Attribution License 13



Termination in Practice

In practice: often easier to consider just the rewrite rules by themselves,

rather than their application to an arbitrary term t.

Show for each rule li = ri, that ri < li.

Example:

g x < f (g x) and f x < g (f x)

Requires t to become smaller whenever any subterm of t is made smaller.

Formally:

Requires < to be monotonic with respect to the structure of terms:

s < t −→ u[s] < u[t].

True for most orders that don’t treat certain parts of terms as special cases.

Copyright NICTA 2013, provided under Creative Commons Attribution License 14



Example Termination Proof

Problem: Rewrite formulae containing ¬, ∧, ∨ and −→, so that they don’t

contain any implications and ¬ is applied only to variables and constants.

Rewrite Rules:

➜ Remove implications:

imp: (A −→ B) = (¬A ∨B)

➜ Push ¬s down past other operators:

notnot: (¬¬P ) = P

notand: (¬(A ∧B)) = (¬A ∨ ¬B)

notor: (¬(A ∨B)) = (¬A ∧ ¬B)

We show that the rewrite system defined by these rules is terminating.

Copyright NICTA 2013, provided under Creative Commons Attribution License 15



Order on Terms

Each time one of our rules is applied, either:

➜ an implication is removed, or

➜ something that is not a ¬ is hoisted upwards in the term.

This suggests a 2-part order, <r: s <r t iff:

➜ num imps s < num imps t, or

➜ num imps s = num imps t ∧ osize s < osize t.

Let:

➜ s <i t ≡ num imps s < num imps t and

➜ s <n t ≡ osize s < osize t

Then <i and <n are both well-founded orders (since both functions return nats).

<r is the lexicographic order over <i and <n. <r is well-founded since <i and

<n are both well-founded.

Copyright NICTA 2013, provided under Creative Commons Attribution License 16



Order Decreasing

imp clearly decreases num imps.

osize adds up all non-¬ operators and variables/constants, weights each one

according to its depth within the term.

osize′ c acm = 2acm

osize′ (¬P ) acm = osize′ P (acm+ 1)

osize′ (P ∧Q) acm = 2acm + (osize′ P (acm+ 1)) + (osize′ Q (acm+ 1))

osize′ (P ∨Q) acm = 2acm + (osize′ P (acm+ 1)) + (osize′ Q (acm+ 1))

osize′ (P −→ Q) acm = 2acm + (osize′ P (acm+ 1)) + (osize′ Q (acm+ 1))

osize P = osize′ P 0

The other rules decrease the depth of the things osize counts, so decrease osize.

Copyright NICTA 2013, provided under Creative Commons Attribution License 17



Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called Simplifier

apply simp

➜ uses simplification rules

➜ (almost) blindly from left to right

➜ until no rule is applicable.

termination: not guaranteed
(may loop)

confluence: not guaranteed
(result may depend on which rule is used first)

Copyright NICTA 2013, provided under Creative Commons Attribution License 18



Control

➜ Equations turned into simplification rules with [simp] attribute

➜ Adding/deleting equations locally:

apply (simp add: <rules>) and apply (simp del: <rules>)

➜ Using only the specified set of equations:

apply (simp only: <rules>)

Copyright NICTA 2013, provided under Creative Commons Attribution License 19



DEMO

Copyright NICTA 2013, provided under Creative Commons Attribution License 20



We have seen today...

➜ Equations and Term Rewriting

➜ Confluence and Termination of reduction systems

➜ Term Rewriting in Isabelle

Copyright NICTA 2013, provided under Creative Commons Attribution License 21



Exercises

➜ Show, via a pen-and-paper proof, that the osize function is monotonic with respect to

the structure of terms from that example.

Copyright NICTA 2013, provided under Creative Commons Attribution License 22


