

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Last time...

- \rightarrow natural deduction rules for \land , \lor , \longrightarrow , \neg , iff...
- → proof by assumption, by intro rule, elim rule
- → safe and unsafe rules

Content

→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3]
Term rewriting	$[4^a]$
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	$[6^b, 7]$
 Code generation, type classes 	[7]
 Hoare logic, proofs about programs, refinement 	$[8,9^c,10^d]$
Isar, locales	[11,12]

 $^{^{}a}$ a1 due; b a2 due; c session break; d a3 due

QUANTIFIERS

Scope

- Scope of parameters: whole subgoal
- Scope of \forall , \exists , . . .: ends with ; or \Longrightarrow

Example:

$$\bigwedge x \ y. \ \llbracket \ \forall y. \ P \ y \longrightarrow Q \ z \ y; \ Q \ x \ y \ \rrbracket \implies \exists x. \ Q \ x \ y$$

means

$$\bigwedge x \ y. \ \llbracket \ (\forall y_1. \ P \ y_1 \longrightarrow Q \ z \ y_1); \ Q \ x \ y \ \rrbracket \implies (\exists x_1. \ Q \ x_1 \ y)$$

$$\frac{\bigwedge x. \ P \ x}{\forall x. \ P \ x}$$
 alll $\frac{\forall x. \ P \ x}{R}$ allE

$$\frac{P?x}{\exists x.\ Px} \text{ exl } \frac{\exists x.\ Px \quad \bigwedge x.\ Px \Longrightarrow R}{R} \text{ exE}$$

- all and exE introduce new parameters $(\bigwedge x)$.
- allE and exl introduce new unknowns (?x).

Instantiating Rules

apply (rule_tac x = "term" in rule)

Like **rule**, but ?x in rule is instantiated by term before application.

Similar: erule_tac

 $m{x}$ is in rule, not in goal

Two Successful Proofs

1.
$$\forall x. \exists y. x = y$$

apply (rule allI)

1.
$$\bigwedge x$$
. $\exists y$. $x = y$

best practice

apply (rule_tac x = "x" in exl)

1. $\bigwedge x. \ x = x$

apply (rule refl)

simpler & clearer

exploration

apply (rule exl)

 $1. \bigwedge x. \ x = ?y \ x$

apply (rule refl)

 $?y \mapsto \lambda u.u$

shorter & trickier

Two Unsuccessful Proofs

1.
$$\exists y. \ \forall x. \ x = y$$

apply (rule_tac x = ??? in exl)

apply (rule exl)

1.
$$\forall x. \ x = ?y$$

apply (rule allI)

1.
$$\bigwedge x. \ x = ?y$$

apply (rule refl)

$$?y \mapsto x \text{ yields } \bigwedge x'.x' = x$$

Principle:

 $?f x_1 \dots x_n$ can only be replaced by term t

if
$$params(t) \subseteq x_1, \ldots, x_n$$

Safe and Unsafe Rules

Safe alll, exE

Unsafe allE, exl

Create parameters first, unknowns later

DEMO: QUANTIFIER PROOFS

Parameter names are chosen by Isabelle

1.
$$\forall x. \exists y. x = y$$

apply (rule allI)

1.
$$\bigwedge x$$
. $\exists y$. $x = y$

apply (rule_tac x = "x" in exl)

Brittle!

Renaming parameters

1.
$$\forall x. \exists y. x = y$$

apply (rule allI)

1.
$$\bigwedge x$$
. $\exists y$. $x = y$

apply (rename_tac N)

1.
$$\bigwedge N$$
. $\exists y$. $N = y$

apply (rule_tac
$$x = "N"$$
 in exl)

In general:

(rename_tac $x_1 \dots x_n$) renames the rightmost (inner) n parameters to

$$x_1 \dots x_n$$

apply (frule < rule >)

Rule:
$$[A_1; \ldots; A_m] \Longrightarrow A$$

Subgoal: 1.
$$[B_1; ...; B_n] \Longrightarrow C$$

Substitution:
$$\sigma(B_i) \equiv \sigma(A_1)$$

New subgoals: 1.
$$\sigma(\llbracket B_1; \ldots; B_n \rrbracket \Longrightarrow A_2)$$

•

m-1.
$$\sigma(\llbracket B_1; \ldots; B_n \rrbracket \Longrightarrow A_m)$$

$$\mathsf{m}.\ \sigma(\llbracket B_1;\ldots;B_n;A\rrbracket\Longrightarrow C)$$

Like **frule** but also deletes B_i : **apply** (drule < rule >)

$$\frac{P \wedge Q}{P}$$
 conjunct1 $\frac{P \wedge Q}{Q}$ conjunct2

$$\frac{P \longrightarrow Q}{Q}$$
 mp

$$\frac{\forall x. \ P \ x}{P \ ?x}$$
 spec

Forward Proof: OF

$$r$$
 [OF $r_1 \dots r_n$]

Prove assumption 1 of theorem r with theorem r_1 , and assumption 2 with theorem r_2 , and ...

Rule
$$r$$
 $[A_1; \ldots; A_m] \Longrightarrow A$

Rule
$$r_1$$
 $[B_1; \ldots; B_n] \Longrightarrow B$

Substitution
$$\sigma(B) \equiv \sigma(A_1)$$

$$r [\mathsf{OF} \ r_1] \qquad \sigma(\llbracket B_1; \dots; B_n; A_2; \dots; A_m \rrbracket \Longrightarrow A)$$

Forward proofs: THEN

 $r_1 \ [\mathsf{THEN} \ r_2] \quad \mathsf{means} \quad r_2 \ [\mathsf{OF} \ r_1]$

DEMO: FORWARD PROOFS

Hilbert's Epsilon Operator

(David Hilbert, 1862-1943)

 $\varepsilon x. Px$ is a value that satisfies P (if such a value exists)

 ε also known as **description operator**. In Isabelle the ε -operator is written SOME $x.\ P\ x$

$$\frac{P?x}{P(\mathsf{SOME}\,x.\,P\,x)}$$
 somel

More Epsilon

ε implies Axiom of Choice:

$$\forall x. \exists y. Q \ x \ y \Longrightarrow \exists f. \ \forall x. \ Q \ x \ (f \ x)$$

Existential and universal quantification can be defined with ε .

Isabelle also knows the definite description operator **THE** (aka ι):

$$\frac{}{(\mathsf{THE}\;x.\;x=a)=a}$$
 the_eq_trivial

Some Automation

More Proof Methods:

apply (intro <intro-rules>) repeatedly applies intro rules

apply (elim <elim-rules>) repeatedly applies elim rules

apply clarify applies all safe rules

that do not split the goal

apply safe applies all safe rules

apply blast an automatic tableaux prover

(works well on predicate logic)

apply fast another automatic search tactic

EPSILON AND AUTOMATION DEMO

We have learned so far...

- → Proof rules for predicate calculus
- → Safe and unsafe rules
- → Forward Proof
- → The Epsilon Operator
- → Some automation

Assignment

Assignement 1 is out today!

Reminder: DO NOT COPY

- → Assignments and exams are take-home. This does NOT mean you can work in groups. Each submission is personal.
- → For more info, see Plagiarism Policy