
COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

λ
→

and HOL

1



Last time...

➜ Simply typed lambda calculus: λ→

➜ Typing rules for λ→, type variables, type contexts

➜ β-reduction in λ→ satisfies subject reduction

➜ β-reduction in λ→ always terminates

➜ Types and terms in Isabelle

Copyright NICTA 2012, provided under Creative Commons Attribution License 2



Content

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6b, 7]

• Code generation, type classes [7]

• Hoare logic, proofs about programs, refinement [8,9c,10d]

• Isar, locales [11,12]

aa1 due; ba2 due; csession break; da3 due

Copyright NICTA 2012, provided under Creative Commons Attribution License 3



PREVIEW: PROOFS IN ISABELLE

Copyright NICTA 2012, provided under Creative Commons Attribution License 4



Proofs in Isabelle

General schema:

lemma name: ”<goal>”

apply <method>

apply <method>

. . .

done

➜ Sequential application of methods until
all subgoals are solved.

Copyright NICTA 2012, provided under Creative Commons Attribution License 5



The Proof State

1.
∧
x1 . . . xp.[[A1; . . . ;An]] =⇒ B

2.
∧
y1 . . . yq.[[C1; . . . ;Cm]] =⇒ D

x1 . . . xp Parameters

A1 . . . An Local assumptions

B Actual (sub)goal

Copyright NICTA 2012, provided under Creative Commons Attribution License 6



Isabelle Theories

Syntax:

theory MyTh

imports ImpTh
1

. . . ImpThn

begin

(declarations, definitions, theorems, proofs, ...)∗

end

➜ MyTh: name of theory. Must live in file MyTh.thy

➜ ImpTh
i
: name of imported theories. Import transitive.

Unless you need something special:

theory MyTh imports Main begin . . . end

Copyright NICTA 2012, provided under Creative Commons Attribution License 7



Natural Deduction Rules

A B
A ∧ B

conjI
A ∧B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨B

disjI1/2
A ∨B A =⇒ C B =⇒ C

C
disjE

A =⇒ B
A −→ B

impI
A −→ B A B =⇒ C

C
impE

For each connective (∧,∨, etc):

introduction and elimination rules

Copyright NICTA 2012, provided under Creative Commons Attribution License 8



Proof by assumption

apply assumption

proves

1. [[B1; . . . ;Bm]] =⇒ C

by unifying C with one of the Bi

There may be more than one matching Bi and multiple unifiers.

Backtracking!

Explicit backtracking command: back

Copyright NICTA 2012, provided under Creative Commons Attribution License 9



Intro rules

Intro rules decompose formulae to the right of =⇒.

apply (rule <intro-rule>)

Intro rule [[A1; . . . ;An]] =⇒ A means

➜ To prove A it suffices to show A1 . . . An

Applying rule [[A1; . . . ;An]] =⇒ A to subgoal C:

➜ unify A and C

➜ replace C with n new subgoals A1 . . . An

Copyright NICTA 2012, provided under Creative Commons Attribution License 10



Elim rules

Elim rules decompose formulae on the left of =⇒.

apply (erule <elim-rule>)

Elim rule [[A1; . . . ;An]] =⇒ A means

➜ If I know A1 and want to prove A it suffices to show A2 . . . An

Applying rule [[A1; . . . ;An]] =⇒ A to subgoal C:

Like rule but also

➜ unifies first premise of rule with an assumption

➜ eliminates that assumption

Copyright NICTA 2012, provided under Creative Commons Attribution License 11



DEMO

Copyright NICTA 2012, provided under Creative Commons Attribution License 12



MORE PROOF RULES

Copyright NICTA 2012, provided under Creative Commons Attribution License 13



Iff, Negation, True and False

A =⇒ B B =⇒ A
A = B

iffI
A = B [[A −→ B;B −→ A]] =⇒ C

C
iffE

A = B
A =⇒ B

iffD1
A = B
B =⇒ A

iffD2

A =⇒ False
¬A

notI
¬A A

P
notE

True
TrueI

False
P

FalseE

Copyright NICTA 2012, provided under Creative Commons Attribution License 14



Equality

t = t refl
s = t
t = s

sym r = s s = t
r = t

trans

s = t P s
P t

subst

Rarely needed explicitly — used implicitly by term rewriting

Copyright NICTA 2012, provided under Creative Commons Attribution License 15



Classical

P = True ∨ P = False
True-False

P ∨ ¬P
excluded-middle

¬A =⇒ False
A

ccontr
¬A =⇒ A

A
classical

➜ excluded-middle, ccontr and classical

not derivable from the other rules.

➜ if we include True-False, they are derivable

They make the logic “classical”, “non-constructive”

Copyright NICTA 2012, provided under Creative Commons Attribution License 16



Cases

P ∨ ¬P
excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case tac term)

Copyright NICTA 2012, provided under Creative Commons Attribution License 17



Safe and not so safe

Safe rules preserve provability

conjI, impI, notI, iffi, refl, ccontr, classical, conjE, disjE

A B
A ∧B

conjI

Unsafe rules can turn a provable goal into an unprovable one

disjI1, disjI2, impE, iffD1, iffD2, notE

A
A ∨B

disjI1

Apply safe rules before unsafe ones

Copyright NICTA 2012, provided under Creative Commons Attribution License 18



DEMO

Copyright NICTA 2012, provided under Creative Commons Attribution License 19



What we have learned so far...

➜ natural deduction rules for ∧, ∨, −→, ¬, iff...

➜ proof by assumption, by intro rule, elim rule

➜ safe and unsafe rules

Copyright NICTA 2012, provided under Creative Commons Attribution License 20


