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Last time... A calculus is inconsistent

NICTA NICTA

Can find term R such that R R =3 not(R R)
=» )\ calculus syntax

=» free variables, substitution

=» /3 reduction

=» « and n conversion

=» B reduction is confluent

=» )\ calculus is expressive (turing complete)
=» ) calculus is inconsistent

There are more terms that do not make sense:
12, true false, etc.

Solution: rule out ill-formed terms by using types.
(Church 1940)
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Introducing types

Idea: assign a type to each “sensible” A term.

Examples:
= for termt hastypea write t::«
= ifz hastype athen Az. 2 is afunction from o to
Write: (A\z.2) ta=«
= for st tobe sensible:
s must be function
t must be right type for parameter

lfs:a=Bandt:athen(st):
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THAT’S ABOUTIT
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NOW FORMALLY AGAIN
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Syntax for \~

NICTA
Terms: ¢ == v | c| (tt) | (M. ¥)
v,z €V, ceC, V,C setsof names

Types: 7 == b |v |7 =7
b € {bool,int,...} base types
v e {a,B,...} type variables

a=zf=y = a=(@=1)

Context I':
T': function from variable and constant names to types.

Term ¢ has type 7 in context I': Thtor
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Examples

TFAz.2)ta=>a«
ly + int]Fy:int
[z <~ bool] F (Ay.y) z :: bool

JEXAfaz. fzu(a=0)=a=p

A term ¢ is well typed or type correct
ifthere are"'and 7 suchthat ' ¢ :: 7
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Type Checking Rules
NICTA
Variables: Thz:D(z)
L I'tt1um=7m Thiyun
Application: TF (b f) =7
Abstraction: Mo cnlbtamn

'tz t)um =7

Slide 10

e

Example Type Derivation:

NICTA

[z a,y+Blhaz:a
T—alFAy =
JF Xy zia= 0=«
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More complex Example

NICTA
'tfra=(a=p) Trz:a
I'tfazra=p I'ka:a
T'tfax:p

f+a=a=plFXe. faz:a=f
JFXMa feos(a=>a=p)=a=p

I=[f<a=a= 6,z q
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More general Types
s Yp NICTA

A term can have more than one type.

Example: [J+ Az.2 :bool = bool

lFAz.z:a=a

Some types are more general than others:

7 <o ifthereis a substitution S such that 7 = S(0)

Examples:

int =bool < a=f < B=>a L a=>a

~
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Most general Types
s Yp NICTA

Fact: each type correct term has a most general type

Formally:
F'tter = 3Jo.TktuoANo . Thtuo =0 So)

It can be found by executing the typing rules backwards.

=» type checking: checkingif I' - ¢ :: 7 for givenI" and
=» type inference: computing I and 7 such that ' - ¢ :: 7

Type checking and type inference on A\~ are decidable.
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What about 3 reduction?

NICTA
Definition of J reduction stays the same.

Fact: Well typed terms stay well typed during 3 reduction

Formally: I'bsur ANs—pt=TFtur

This property is called subject reduction
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What about termination?
NICTA

[ reduction in A~ always terminates.

(Alan Turing, 1942)

-» =3 is decidable
To decide if s =g ¢, reduce s and t to normal form (always exists, because — 3

terminates), and compare result.
= =.3, is decidable
This is why Isabelle can automatically reduce each term to n normal form.
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What does this mean for Expressiveness?
NICTA

Not all computable functions can be expressed in A ~!
How can typed functional languages then be turing complete?
Fact:
Each computable function can be encoded as closed, type correct A\~ term
usingY :: (1 = 7) = 7 withY ¢t — 4 ¢ (Y t) as only constant.
=» Y is called fix point operator

=» used for recursion
=» lose decidability (what does Y (Az. z) reduce to?)
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Types and Terms in Isabelle

Types: 7 == b |v|vaC | 7=71](1..., 7) K
b € {bool, int,...} base types
v e {a,B,...} type variables
K € {set, list,...} type constructors
C € {order, linord,...} type classes

Terms: t == v |c| 70| (tt) | (Az.t)
v,z €V, ceC, V,C setsof names

=» type constructors: construct a new type out of a parameter type.
Example: int list

=» type classes: restrict type variables to a class defined by axioms.
Example: « :: order

=» schematic variables: variables that can be instantiated.
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Type Classes

NICTA

=» similar to Haskell’s type classes, but with semantic properties
class order =
assumes order_refl: "z < 27
assumes order_trans: [z < y;y < 2] = = < 27

=» theorems can be proved in the abstract
lemma order_less_trans: ” Az :a :: order. [z < y;y < 2] =z < 2”
=» can be used for subtyping

class linorder = order +
assumes linorder_linear: "z <y Vvy < z”
=» can be instantiated

instance nat :: " {order, linorder}” by . ..
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Schematic Variables
NICTA
X Y
XAY

=» X and Y must be instantiated to apply the rule

But: lemma “z+0=0+2"

= zis free
=» convention: lemma must be true for all =
=» during the proof, = must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.
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Higher Order Unification
NICTA

Unification:
Find substitution ¢ on variables for terms s, ¢t such that o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that o(s) =3, o(t)

Examples:
TXNY =apy TAXT 7X < 2,77 + 1]
7P x =afn TAT 7P+ Az.z A x|
P(?fx) =apy Yo [2f < Az. 2,7V «+ P]

Higher Order: schematic variables can be functions.
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Higher Order Unification
NICTA

=» Unification modulo a3 (Higher Order Unification) is semi-decidable
=» Unification modulo a3 is undecidable
=» Higher Order Unification has possibly infinitely many solutions

But:
=> Most cases are well-behaved
=» Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:
=» is atermin 2 normal form where
=» each occurrence of a schematic variable is of the form ?f ¢, ... t,
=» andthe t; ... t, are n-convertible into n distinct bound variables
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We have learned so far...

=» Simply typed lambda calculus: A\~

=» Typing rules for A7, type variables, type contexts
=» JB-reduction in A\~ satisfies subject reduction

=» JB-reduction in A always terminates

=» Types and terms in Isabelle
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