e

NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Slide 1

e

Exercises from last time

NICTA

=» Download and install Isabelle from
http://mirror.cse.unsw.edu.au/pub/isabelle/

=» Step through the demo files from the lecture web page

=> Write your own theory file, look at some theorems in the library, try 'find_theorems’

=» How many theorems can help you if you need to prove something like “Suc(Suc x))"?

=» What is the name of the theorem for associativity of addition of natural numbers in the
library?

Slide 2

Content

=» Intro & motivation, getting started

=» Foundations & Principles

e Lambda Calculus, natural deduction
e Higher Order Logic
o Term rewriting

= Proof & Specification Techniques

o Inductively defined sets, rule induction
e Datatypes, recursion, induction

e Code generation, type classes

e Hoare logic, proofs about programs, refinement
e Isar, locales

“at due; "a2 due; “session break; “a3 due

Slide 3

A-calculus

Alonzo Church
=» lived 1903-1995
=» supervised people like Alan Turing, Stephen Kleene
=» famous for Church-Turing thesis, lambda calculus,
first undecidability results
=» invented) calculus in 1930’s

A-calculus
=» originally meant as foundation of mathematics
=» important applications in theoretical computer science
=» foundation of computability and functional programming

Slide 4

i

e
NICTA
(1

[1.2]
[37]
[4

[5]

[6°, 7]

[71
8,9¢,109]
[11,12]

e

NICTA

Oe
untyped A-calculus
NICTA

=» turing complete model of computation
=» a simple way of writing down functions

Basic intuition:

instead of f(z) =z +5

write f=Xx.x+5
Ax.z+5
=» aterm
=» anameless function
=» that adds 5 to its parameter

Slide 5

Oe
Function Application
NICTA

For applying arguments to functions
instead of f(a)
write fa

Example: (\z.z+5)a

Evaluating: in (\z. t) areplace z by aint

(computation!)

Example: (Az.2+5) (a+b) evaluatesto (a+b)+5

Slide 6

e

NICTA

THAT’S IT!

Slide 7

e

NICTA

Now FORMAL

Slide 8

e

Syntax

NICTA
Terms: ¢ = v | c| (tt) | (Mz.t)

v,x €V, ceC, V, C setsof names

= v, X variables

- ¢ constants

- (t t) application
= (Az. t) abstraction

Slide 9

e

Conventions
NICTA

=» leave out parentheses where possible
=» list variables instead of multiple A

Example: insteadof (A\y. (Az. (zy))) write Ayz.zy

Rules:
=» listvariables: Az. (\y.t) = Az y.t
=» applicationbindstotheleft: zy 2 = (zy) z # = (v =)
=» abstraction binds to the right: Az. 2 y = Az. (z y) # (\z. z) y

=» leave out outermost parentheses

Slide 10

e

Getting used to the Syntax

NICTA
Example:

ey zaz(yz) =
ey zo(zz) (yz) =

Ay z((z2) (v 2) =
Az Ay Az ((z2) (y 2)) =

(. Ay Az ((2) (¥ 2)))

Slide 11

e

Computation
NICTA

Intuition: replace parameter by argument
this is called 3-reduction

Example
Ay fyz) b (A\z.x) —p
My f(y5) (M.x) —p

f((Qz.z)5) —p
f5

Slide 12

e

Defining Computation

NICTA
ﬂ reduction:
(Az.s)t —p slx <t
s —pg & = (st) —p (s'1)
t —p = (st) —p (st)
s —p & = (Ar.s) —p (Az.9)

Still to do: define s[z « ¢

Slide 13

e

Defining Substitution
NICTA

Easy concept. Small problem: variable capture.

Example: (\z. z 2)[z < 1]

We do not want: (Az. =) as result.

What do we want?

In (A\y. y 2) [z + @] = (Ay. y x) there would be no problem.

So, solution is: rename bound variables.

Slide 14

e

Free Variables

NICTA
Bound variables: in (Az. t), is a bound variable.

Free variables F'V of a term:

FV @) =z}
V@ ={)

FV (st) =FV(s)UFV(t)
FV (Az.t) = FV(t) \ {z}

Example: FV(Az. (\y. Az.z2)y)yz) ={y}

Term ¢ is called closed if FV(t) = {}

Our problematic substitution example, (Az. = z)[z « x|, is problematic because
the bound variable z is a free variable of the replacement term “z”.

Slide 15
Oe
Substitution
NICTA
T [t =t
ylz <+t =y ife#y
clz 1t =c

(s1 82) [w t] = (s1[z < t] solz < t])

(Az. s) [v + t] = (\z. s)
(Ay. s) [x + t] = (\y. slz + t]) ife#yandy ¢ FV(t)

Ay s) [t =Nz.sly« 2]z« t]) ifx#y
and z ¢ FV(t)U FV(s)

Slide 16

Substitution Example

e

(x (Az.2) (\y. z 2))[z]
= (zlz < y]) (A2 2)[z < y]) (M. 2 2)x < y])

= yQz2) (W 2y)

Slide 17

o Conversion

NICTA

e

Bound names are irrelevant:

Az. z and Ay. y denote the same function.

« conversion:

NICTA

s =, t means s = ¢ up to renaming of bound variables.

(Az. t)

r S it

Formally: s s (s)
t o U = (st)

s o 8 = (A\z.s)

s=qt iff s—kt

Ay. tlz < y)) ify & FV(t)
s't)
st')

(
(
(
(M. &)

(—7 = transitive, reflexive closure of —, = multiple steps)

Slide 18

o Conversion

Equality in Isabelle is equality modulo o conversion:

if s =, t then s and ¢ are syntactically equal.

Examples:
sy ay)
= z(A\yz.yx)
=0 2 (ey.zy)
Fa 2(zy.zy)
#o Az z.zT)

Back to 3

Slide 19

We have defined 3 reduction: —4

Some notation and concepts:

= [conversion: s =gt iff In.s —5nAt—%n
t is reducible if there is an s such that t — 3 s
(Az. s) t is called a redex (reducible expression)

t is reducible iff it contains a redex

if it is not reducible, ¢ is in normal form

->
->
->
->

Slide 20

e

NICTA

e

NICTA

Does every \ term have a normal form?

No!

Example:
Az .z z) (e xz) —p
Az .z z) (e zz) —p
Az zz)(Ae.zz) —p...

(but: Az y.y) (M. zz) (A\z. zx)) —5 Ay.y)

A calculus is not terminating

Slide 21

[reduction is confluent

Confluence: s —jaAs —jhy=3t.o —htAy —5t

S
z, Y
N s

Order of reduction does not matter for result

Normal forms in \ calculus are unique

Slide 22

e

NICTA

e

NICTA

e

[reduction is confluent

NICTA
Example:

(A y.) (A2 2 2) a)—5 (A2 g y) (@ 9)—>5 Ay y

Az y.y) (Az. zx)a)—p Ay. y

Slide 23

e

1 Conversion

NICTA
Another case of trivially equal functions: ¢ = (\z. t z)
Mz tx) —y ot ifo ¢ FV(t)
Definition: 5 —n 5 = (st) — (5'1)
t —y, = (st) — (st)
s —y & = (Az.s) —, (Az.d)

s =yt iff In.s —ynAt—rin

Example: (\z. f z) (A\y. gy) — (Az. fz)g — [g

=» 7 reduction is confluent and terminating.
= —3, is confluent.

— s, Means — 3 and —,, steps are both allowed.
=» Equality in Isabelle is also modulo » conversion.

Slide 24

e

NICTA

In fact ...

Equality in Isabelle is modulo «, 3, and n conversion.

We will see later why that is possible.

Slide 25

e

So, what can you do with) calculus?
NICTA

A calculus is very expressive, you can encode:
=» logic, set theory
=» turing machines, functional programs, etc.

Examples:
true = Az y. if truezy —jz
false= Az y. y if falsezy —jy
if =Xzzy.zay

Now, not, and, or, etc is easy:

not = A\z. if false true
and=Azry.if zy false
or =Ary.ifzrtruey

Slide 26

More Examples

Encoding natural numbers (Church Numerals)
0 =Afz. o
1 =Mz fo
2 =M f(f2)
3 =M f(f(fr)

Numeral n takes arguments f and z, applies f n-times to z.
iszero = An.n (A\z. false) true

succ =Anfa. f(nfa)

add =dmn Afz.mf(nfx)

Slide 27

Fix Points

Pz f fxaf) Qo f flzaf) t—p
M fof@a) Qe f f(zaf)) t—p
t Az f f (e f) Qe f. fwzf)D)

p=Qaf. f @z f)) Qaf. f(zzf)
pt—pt(pt) —ptt(nt)) —pt(t(t(ut) —p...

Axf. f(zaxf) (Mf. f (xx f))is Turing’s fix point operator

Slide 28

e

NICTA

e

NICTA

e

Nice, but ...
NICTA

As a mathematical foundation, X does not work. It is inconsistent.
=» Frege (Predicate Logic, ~ 1879):
allows arbitrary quantification over predicates
=> Russell (1901): Paradox R = {X|X ¢ X}
-» Whitehead & Russell (Principia Mathematica, 1910-1913):
Fix the problem
=» Church (1930): X calculus as logic, true, false, A, ... as A terms

with {z|Pz}=Xz. Pz reEM=Mz
Problem: you canwrite R = Az. not (z)
and get (R R) =g not (RR)
Slide 29

e

NICTA

ISABELLE DEMO

Slide 30

e

We have learned so far...

NICTA

=»)\ calculus syntax

=» free variables, substitution

=» /3 reduction

=» « and n conversion

=» B reduction is confluent

=») calculusis very expressive (turing complete)
=») calculus is inconsistent

Slide 31

16

