NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Rafal Kolanski, Gerwin Klein, June Andronick, Toby Murray

Binary Search (java.util.Arravys)

O J o Uk w DN

L e e e e e
< o0 s W N R O e

NICTA

public static int binarySearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;

while (low <= high) {
int mid = (low + high) / 2;
int midval = a[mid];

if (midval < key)
low = mid + 1
else if (midval > key)
high = mid - 1;
else
return mid; // key found

}
return - (low + 1); // key not found.

int mid = (low + high) / 2;

http://googleresearch.blogspot.com/2006/06/

extra—-extra-read—-all—about—-it—nearly.html

Organisatorials

When Tue
Thu

Where Tue:
Thu:

NICTA
9:00-10:30
9:00 —10:30

Law 163 (F8-163)
Australian School Business 205 (E12-205)

http://www.cse.unsw.edu.au/~cs4161/

(Jo

About us

NICTA

Members of the selL4 verification team

->

->
->

$ 4 J

Functional correctness of a C microkernel
Isabelle/HOL model «— Haskell model +—+ C code

10 000 LOC / 300 000 lines of proof script (!)
25 person years / $6 million

http://ertos.nicta.com.au/research/14.verified/

We are always embarking on exciting new projects.
We offer

summer student scholarship projects
honours and PhD theses
research assistant and verification engineer positions

(Jo

What you will learn

NICTA

=» how to use a theorem prover
=» background, how it works

=» how to prove and specify

=» how to reason about programs

Health Warning

Theorem Proving is addictive

Content — Using Theorem Provers

=>» Intro & motivation, getting started

=» Foundations & Principles

e Lambda Calculus, natural deduction
e Higher Order Logic
e Term rewriting

=» Proof & Specification Techniques

¢ Inductively defined sets, rule induction

e Datatypes, recursion, induction

e Code generation, type classes

e Hoare logic, proofs about programs, refinement
e Isar, locales

(Jo

NICTA

Rough timeline

[today]

[1.2]
[3¢]
[4]

[5]

[6°, 7]

[7]
[8,9°,104]
[11,12]

2a1 due; a2 due; “session break; ¢a3 due

(Jo

What you should do to have a chance at succeeding
NICTA

-» attend lectures

=>» try Isabelle early

=» redo all the demos alone

=» try the exercises/homework we give, when we do give some
=> DO NOT CHEAT

e Assignments and exams are take-home. This does NOT mean you can work in
groups. Each submission is personal.

e For more info, see Plagiarism Policy®

® http://www.cse.unsw.edu.au/people/studentoffice/policies/yellowform.html#assign

e

NICTA

Credits

some material (in using-theorem-provers part) shamelessly stolen from

David Basin, Burkhardt Wolff

Don’t blame them, errors are mine

What is a proof?

(Jo

to prove
=» from Latin probare (test, approve, prove)
=» to learn or find out by experience (archaic)

=» to establish the existence, truth, or validity of
(by evidence or logic)
prove a theorem, the charges were never proved in court

pops up everywhere
=» politics (weapons of mass destruction)
=» courts (beyond reasonable doubt)
=» religion (god exists)
=» science (cold fusion works)

NICTA
(Merriam-Webster)

()@

NICTA
In mathematics, a proof is a demonstration that, given certain axioms,

some statement of interest is necessarily true. (Wikipedia)

What is a mathematical proof?

Example: /2 is not rational.

Proof: assume there is » € @ such that r? = 2.
Hence there are mutually prime p and ¢ with » = g
Thus 2¢*? = p?, i.e. p? is divisible by 2.

2 is prime, hence it also divides p, i.e. p = 2s.

Substituting this into 2¢* = p? and dividing by 2 gives ¢? = 2s2. Hence, q is also
divisible by 2. Contradiction. Qed.

10

Nice, but..

=» still not rigorous enough for some

e what are the rules?

e what are the axioms?

e how big can the steps be?

e what is obvious or trivial?
=» informal language, easy to get wrong
=» easy to miss something, easy to cheat

Theorem. A cat has nine tails.

(Jo

NICTA

Proof. No cat has eight tails. Since one cat has one more tail than no cat, it must

have nine tails.

11

What is a formal proof?

(Jo

A derivation in a formal calculus

NICTA

Example: AN B — B A A derivable in the following system

Rules:

Proof:

ok~ WD

Xes
SFX

SEFX SEY
SEFXAY

{A,B}YF B
(A, B}F A

{A,BYFBAA
{AANB}FBAA

(- AAB—BAA

SU{X}FY

(assumption)

SFx -y (mp)

SU{X,Y}F Z

conl) s ix Avir 2

(conjE)

(by assumption)

(by assumption)

(by conjl with 1 and 2)
(by conjE with 3)

(by impl with 4)

12

What is a theorem prover?

Implementation of a formal logic on a computer.

=>» fully automated (propositional logic)
=» automated, but not necessarily terminating (first order logic)
=» with automation, but mainly interactive (higher order logic)

=» based on rules and axioms
=» can deliver proofs

There are other (algorithmic) verification tools:

=> model checking, static analysis, ...
=» usually do not deliver proofs

(Jo

NICTA

13

Why theorem proving?

=» Analysing systems/programs thoroughly

=» Finding design and specification errors early

=» High assurance (mathematical, machine checked proof)
=» it's not always easy

=>» it's fun

NICTA

14

Main theorem proving system for this course

Isabelle

=» used here for applications, learning how to prove

NICTA

15

What is Isabelle?

A generic interactive proof assistant

=» generic:

not specialised to one particular logic

(two large developments: HOL and ZF, will mainly use HOL)
=» interactive:

more than just yes/no, you can interactively guide the system
=» proof assistant:

helps to explore, find, and maintain proofs

(e
NICTA

16

Why Isabelle?

free

widely used systems

active development

high expressiveness and automation
reasonably easy to use

K JE R 2R A

(and because we know it best ;-))

NICTA

17

If | prove it on the computer, it is correct, right?

NICTA

18

If | prove it on the computer, it is correct, right?

NICTA
No, because:

@ hardware could be faulty

operating system could be faulty
implementation runtime system could be faulty
compiler could be faulty

implementation could be faulty

logic could be inconsistent

Q ©® @ ® © ©

theorem could mean something else

19

(Jo

If | prove it on the computer, it is correct, right?

No, but:

probability for
=» OS and H/W issues reduced by using different systems
=» runtime/compiler bugs reduced by using different compilers
=» faulty implementation reduced by right architecture
=» inconsistent logic reduced by implementing and analysing it
=» wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than manual proof

NICTA

20

If | prove it on the computer, it is correct, right?

Soundness architectures

careful implementation PVS

LCF approach, small proof kernel HOL4
Isabelle

explicit proofs + proof checker Coqg
Twelf
Isabelle

HOL4

(Jo

NICTA

21

Meta Logic

Meta language:
The language used to talk about another language.

Examples:
English in a Spanish class, English in an English class

Meta logic:
The logic used to formalize another logic

Example:
Mathematics used to formalize derivations in formal logic

(Jo

NICTA

22

Meta Logic — Example

NICTA
Formulae: F:=V | F—F | FAF | False

Syntax: V= [A-Z]

Derivable: SF X X aformula, S a set of formulae

logic / meta logic

SFX SFX —Y
SEFX SkY SUIX. Y Z

SFXAY SU{XAY}FZ

23

Isabelle’s Meta Logic

NICTA

24

A

Syntax: Az F (F' another meta level formula)
in ASCIl: '!x. F

=» universal quantifier on the meta level
=» used to denote parameters
=» example and more later

NICTA

25

—

Syntax: A — B (A, B other meta level formulae)
in ASCIl: A ==> B

Binds to the right:

A—B—(C = A— (B=C)

Abbreviation:

[A;B] —C = A=—B=—C(C

= read: A and B implies C
=» used to write down rules, theorems, and proof states

NICTA

26

Example: a theorem

mathematics:

formal logic:

variation:

Isabelle:
variation:
variation:

fr <0andy < 0,thenz+y <0

Fr<O0NANy<0—ax+y<O0
r<0iy<0F xz4+y<0

lemma’zs < 0Ay<0—ax+y<0
lemma’[z < 0;y < 0] = 2x+y <0
lemma

assumes "z < 0” and "y < 0” shows "z + y < 0”

NICTA

27

Example: a rule

X Y
logic: XAY

SHFX SEFY
variation: SFXAY

Isabelle: [X;Y] = X AY

NICTA

28

Example: a rule with nested implication

logic:

variation:

Isabelle:

Xy

XvYy Z Z

Z

SU{X}FZ Su{Y}rZ

SU{XvY}+Z

XVY: X = 2Z;)Y = 7| = 7

NICTA

29

A

Syntax: J\x. F (F" another meta level formula)
in ASCIl: %x. F

=» lambda abstraction

=» used for functions in object logics

=» used to encode bound variables in object logics
=» more about this in the next lecture

NICTA

30

ENOUGH THEORY!
GETTING STARTED WITH ISABELLE

NICTA

31

System Architecture

Proof General — user interface

HOL, ZF — object-logics

Isabelle — generic, interactive theorem prover

Standard ML — logic implemented as ADT

User can access all layers!

(Jo

NICTA

32

System Requirements

NICTA

=» Linux, Windows, or MacOS X

=» Standard ML
(PolyML fastest, SML/NJ supports more platforms)

-» Emacs (for ProofGeneral) or Java (for jEdit)

Premade packages for Linux, Mac, and Windows + info on:

http://mirror.cse.unsw.edu.au/pub/isabelle/download.html

33

Documentation

Available from http://isabelle.in.tum.de
-» Learning Isabelle
e Tutorial on Isabelle/HOL (LNCS 2283)

e Tutorial on Isar
e Tutorial on Locales

=»> Reference Manuals
e Isabelle/lsar Reference Manual

e Isabelle Reference Manual
e Isabelle System Manual

-» Reference Manuals for Object-Logics

NICTA

34

|Edit/PIDE

1806
File Edit

Search Markers Folding View Utilities Macros Plugins

week01A demo.thy

Help

"Suc x"

0 _A_.leeko 1A_demo.thy (~/teaching/comp4161/12s2/slides/week01A/)

text

term
term
term
term
term
text
term

text

term

text

nron

{‘

"X"

"SIC X"

"Suce x”

"Suc x = Succ y"
‘\K. constant "Nat.Suc"
1 nat = nat

{* ?U‘UT!pTEYHHUFe types inside terms: *}

declare [[show types]]

"Suc X = Succ y"

{* To switch off again: *}

declare [[show types=false]]

"Suc x = Succ y"

{* 0 and + are overloaded: *}

"m+ n=A"

"nat*

O ~ Console | Qutput | Prover Session

Note that free variables (eg x), bound variables (eg An) and
constants (eg Suc) are displayed differently.

3

]

1

AIARPIS

100% ~v| [|Tracing (¥ Autoupdate | Update |

[13.8 272/3643)

Osabelle,siiekick UTF-5-{sabella)Nm

UGHEIH 124Mb _10:26 AM

NICTA

35

|Edit/PIDE

8006 week01A_demo.thy

File Edit Search Markers Folding View Utilities Macros Plugins Help

Ol week01A_demo.thy (~/teaching/comp4161/12s2/slides /weekQ1A/)

= [text {*
Note that free variables (eg x), bound variables (eg An) and
constants (eg Suc) are displayed differently. *}

term “"x"
term "SIC X"
term "Succ x"
term "Sue x = Succ y"
e "‘\xiconstant "Mat.5Suc”
:: nat = nat
text {* TordISpray"more types inside terms: *}
~ |declare [[show types]]
* |term "Suc x = Succ y"

text {* To switch off again: *}

= |declare [[show_types=falsel]
= |term "Suc x = Succ y"

~ |text {* @ and + are overloaded: *}

nran "n + n = A"

Ilsuc xlr
"nat"

B - Console | Output | Prover Session

100% ~ ! Tracing

]

4

AIARPIS

Theory File

o Auto update | Update |

Isabelle Output

| 13,8 (272/3643)

lisabelle,sidekick,UTF-8-Isabelle)

UGHETH 124Mb 10:26 AM

NICTA

36

|Edit/PIDE

. week01A_demo.thy
Markers Folding View Utilities Macros Plugins Help
~/teaching/comp4161/12s2/slides/week01A/) =~
[

= [text {*

Note that free variables (eg x), bound variables (eg An) and<(LaTeX Comment

constants (eg Suc) are displayed differently. *}

term "x" -
term "SIC x"
term "Succ x"
term "Sue x = Succ y"
> |term "Ax

constant "Nat.Suc"
1 nat = nat

text {* Tororspray more types insi
~ |declare [[show types]]
= |term "Suc x = Succ y"

logic terms go in
quotes:“‘x + 2"

text {* To switch off again: *

}
~ |declare [[show types=false]]
=~ |term "Suc x = Succ y" Commands

~ |text {* 0 and + are overloaded: *}

nran "n + n = A"

100% v| [|Tracing & Auto update | Update |

Ilsuc xlr
"nat"

B - Console | Output | Prover Session

[13.8 272/3643) (isabelle,sidekick, UTF-8-Isabelle) UGHETR 124Mb 10:26 AM

NICTA

37

|Edit/PIDE

8006

week01A_demo.thy

File Edit

Search Markers Folding View Utilities Macros Plugins Help

1 week0 1A_demo.thy (~/teaching/comp4161/12s2/slides/week01A/)

* [text

term
term
term
term
> |term

text

{!‘

Note that free variables (eg x), bound variables (eg An) and
constants (eg Suc) are displayed differently. *}

yen

“sffc x”

"Suce x”

"Suc x = Succ y"

"Ax constant "Nat.Suc"
11 nat = nat

{* TorgTspray more types inside terms: *}

~ |declare [[show types]]

=iterm

text

"Suc X = Succ y"

{* To switch off again: *}

~ |declare [[show types=false]]

* [|term
* |text

nron
"SLI‘C xlr

"Suc x = Succ y"

{* 0 and + are overly”
tn_s.0m 0 Scroll through
Prover Session/README

: "nat” for tips and instructions

date | Update |

B - Console | Output | Prover Session

4

A4ePIS

[13.8 272/3643) (isabelle,sidekick, UTF-8-Isabelle)

UGHETH 124Mb 10:26 AM

NICTA

38

|Edit/PIDE

NICTA

week01A_demo.thy
Plugins _Help

4

* [text {*
Note that free variables (eg x), bound variables (eg An) and
constants (eg Suc) are displayed differently. *}

AIARPIS

term "x"
term "SIC X"

term "Succ x" (

term "SUC X = Succ wt

i term "‘\xcnnstant "Nat.Suc" Command CIiCk
pes inside terms: *} jumps to deﬁnition

text {* ToraISpray mor
~ |declare [[show types]]
=Sterm "Suc x = Succ y"

text {* To switch off again: *}
~ |declare [[show_types=false]]

= |term "Suc x = Succ y"

Command + hover
for popup info

~ |text {* 0 and + are overloaded: *}

nran "n + n = A"

00% ~ [| Tracing 4 Auto update | Update |

Ilsuc xlr
"nat"

B - Console | Output | Prover Session
[13.8 272/3643) (isabelle,sidekick, UTF-8-Isabelle) UCHEE 124Mb 10:26 AM

39

|Edit/PIDE

8006

week01A_demo.thy

File Edit Search Markers Folding View Utilities Macros Plugins Help

Ol week01A_demo.thy (~/teaching/comp4161/12s2/slides /weekQ1A/)

= [text {*
Note that free variables (eg x), bound variab’
constants (eg Suc) are displayed differently

term "x"

term "SIC x"

term "Succ x"

term "Sue x = Succ y"

> |term "Ax

constant "Nat.Suc"
:: nat = nat

text {* TordISpray"more types inside terms: *}

~ |declare [[show types]]
* |term "Suc x = Succ y"

text {* To switch off again: *}

processed

error

~ |declare [[show types=false]]
= |term "Suc x = Succ y"

unprocessed L
P

~ |text {* 0 and + are overloaded: *}

nran "n + n = A"

"Suc x"

"nat"

B + Console | Qutput | Prover Session

100 | []Tracing @ Autoupdate | Update |

4

AIARPIS

| 13,8 (272/3643)

(isabelle,sidekick, UTF-8-lsabelle)

UGHETH 124Mb 10:26 AM

NICTA

40

DEMO

NICTA

41

(Jo

Exercises

NICTA

=»> Download and install Isabelle from

http://mirror.cse.unsw.edu.au/pub/isabelle/
=» Step through the demo files from the lecture web page
=» Write your own theory file, look at some theorems in the library, try ‘find_theorems’

=» How many theorems can help you if you need to prove something like “Suc(Suc x))”?

=» What is the name of the theorem for associativity of addition of natural numbers in the
library?

42

