NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

1P} ...1Q}

Last Time

O O 0O O

Syntax of a simple imperative language
Operational semantics

Program proof on operational semantics
Hoare logic rules

Soundness of Hoare logic

NICTA

Content
NICTA
[Intro & motivation, getting started [1]
[1 Foundations & Principles
e Lambda Calculus, natural deduction [1,2]
e Higher Order Logic [39]
e Term rewriting [4]
[1 Proof & Specification Techniques
o |sar [5]
e Inductively defined sets, rule induction [6°]
e Datatypes, recursion, induction [7¢, 8]
e Calculational reasoning, code generation [9]
e Hoare logic, proofs about programs [104,11,12]

2al due; *a2 due: “session break: ¢a3 due

()@

Automation?

NICTA
Last time: Hoare rule application is nicer than using operational semantic.

BUT:

1 it’s still kind of tedious
[1 it seems boring & mechanical

Automation?

Invariant

NICTA
Problem: While — need creativity to find right (invariant) P

Solution:

[1 annotate program with invariants
[1 then, Hoare rules can be applied automatically

Example:
{M =0AN =0}
WHILE M # aINV{N =M xb} DON :=N+b;M := M + 10D
{N =axb}

Weakest Preconditions

NICTA
pre c Q = weakest P suchthat {P} c{Q}

With annotated invariants, easy to get:

pre SKIP @ = @

pre (z:=a) Q = Mo. Q(o(x :=ao))

pre (c1;c2) @ = prec; (pre c2 Q)

pre (IF b THEN ¢y ELSE ¢5) @ = M. (b—preci Qo)A

(b — pre ce Q o)
pre (WHILEDINVIDOcOD)Q = 1[I

Verification Conditions

NICTA
{pre ¢ Q} ¢ {@Q} only true under certain conditions

These are called verification conditions vc ¢ Q:

vc SKIP @) = True
Ve (x:=a) Q = True
ve (c15¢2) Q = VCcy QA (VCcy (pre ez Q))
vc (IF b THEN ¢; ELSE ¢3) @ = VCci Q AVCcy Q)
ve (WHILEBINVIDO ¢cOD)Q = (Vo.IoAbo —s precl o)A
(Vo. Io A —bo — Q o)A
vccl

vcc QN (P = precQ) = {P} c{Q}

()®

Syntax Tricks
NICTA

[0 xz:=Xo.1 Instead of «x := 1 sucks
0 {Ao.ocx=n} Iinstead of {z = n} sucks as well

Problem: program variables are functions, not values
Solution: distinguish program variables syntactically

Choices:
[1 declare program variables with each Hoare triple

e nNice, usual syntax
e works well if you state full program and only use vcg

[1 separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically

e More syntactic overhead
e program pieces compose nicely

Records In Isabelle

NICTA
Records are a tuples with named components

Example:

record A= a: nat
b:int
[1 Selectors: a:A=nat, b::A=int, ar=SucO
[0 Constructors: (a=Suc0, b=-1)
[0 Update: r(a:=SucO)

Records are extensible:

record B=A +
C :: nat list

(a=Suc0, b=—-1, c=[0,0])

Arrays

Depending on language, model arrays as functions:
[1 Array access = function application:

ai] = ai

[1 Array update = function update:
afili==v = a:==a(ii=v)

Use lists to express length:
[J Array access = nth:
afij = ali
[1 Array update = list update:
afil .==v = a:==alii=V]

(1 Array length = list length:
a.length = lengtha

NICTA

10

Pointers
NICTA
Choice 1
datatype ref = Ref int | Null
types heap =int= val
datatype val = Intint | Bool bool | Struct x int int bool | ...

(I hp:: heap, p :: ref

[1 Pointer access: *p = the_Int (hp (the_addr p))

[J Pointer update: *p:==v = hp == hp ((the_addr p) := V)
[a bit klunky

[] gets even worse with structs

[1 lots of value extraction (the_Int) in spec and program

11

Pointers

Choice 2 (Burstall '72, Bornat '00)

struct with next pointer and element

datatype ref = Ref int | Null

types nexthp = int = ref

types elem_hp =int=int

[]
[]
[]

[]

next :: next_hp, elem :: elem_hp, p :: ref
Pointer access: p—hnext = next (the_addr p)
Pointer update: p—next:==v = next :== next ((the_addr p) := V)

a separate heap for each struct field
buys you p—next # p—elem automatically (aliasing)
still assumes type safe language

NICTA

12

DEMO

NICTA

13

We have seen today ...

[1 Weakest precondition
[1 Verification conditions

[Example program proofs
[1 Arrays, pointers

NICTA

14

