

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

$$\{P\}\,\ldots\{Q\}$$

Slide 1

Last Time

- → Calculations: also/finally
- → [trans]-rules
- → Code generation

NICTA

Slide 2

Content

NICTA

→ Intro & motivation, getting started

→ Foundations & Principles

[1,2]

 Higher Order Logic Term rewriting

• Lambda Calculus, natural deduction

 $[3^{a}]$ [4]

[5]

→ Proof & Specification Techniques

• Inductively defined sets, rule induction

 $[6^{b}]$ $[7^c, 8]$

· Datatypes, recursion, induction Calculational reasoning, code generation • Hoare logic, proofs about programs

[10^d,11,12]

^a a1 due; ^b a2 due; ^c session break; ^d a3 due

Slide 3

A CRASH COURSE IN SEMANTICS

IMP - a small Imperative Language

Commands:

datatype com = SKIP

Cond bexp com com (IF _ THEN _ ELSE _)
While bexp com (WHILE _ DO _ OD)

types loc = string types state = $loc \Rightarrow nat$

types aexp = state ⇒ nat types bexp = state ⇒ bool

Slide 5

Example Program

NICTA

NICTA

Usual syntax:

$$\begin{split} B &:= 1;\\ \text{WHILE } A \neq 0 \text{ DO}\\ B &:= B*A;\\ A &:= A-1 \end{split}$$
 OD

Expressions are functions from state to bool or nat:

$$\begin{split} B := (\lambda \sigma. \ 1); \\ \text{WHILE } (\lambda \sigma. \ \sigma \ A \neq 0) \ \text{DO} \\ B := (\lambda \sigma. \ \sigma \ B * \sigma \ A); \\ A := (\lambda \sigma. \ \sigma \ A - 1) \\ \text{OD} \end{split}$$

Slide 6

What does it do?

So far we have defined:

- → Syntax of commands and expressions
- → State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

- → A wide field of its own
- → Some choices:
 - Operational (inductive relations, big step, small step)
 - Denotational (programs as functions on states, state transformers)
 - · Axiomatic (pre-/post conditions, Hoare logic)

Slide 7

Structural Operational Semantics

$$\overline{\langle \mathsf{SKIP}, \sigma \rangle \longrightarrow \sigma}$$

$$\frac{e \ \sigma = v}{\langle \mathsf{x} := \mathsf{e}, \sigma \rangle \longrightarrow \sigma[x \mapsto v]}$$

$$\frac{\langle c_1, \sigma \rangle \longrightarrow \sigma' \quad \langle c_2, \sigma' \rangle \longrightarrow \sigma''}{\langle c_1, c_2, \sigma \rangle \longrightarrow \sigma''}$$

$$\frac{b \; \sigma = \mathsf{True} \quad \langle c_1, \sigma \rangle \longrightarrow \sigma'}{\langle \mathsf{IF} \; b \; \mathsf{THEN} \; c_1 \; \mathsf{ELSE} \; c_2, \sigma \rangle \longrightarrow \sigma'}$$

$$\frac{b \ \sigma = \mathsf{False} \quad \langle c_2, \sigma \rangle \longrightarrow \sigma'}{\langle \mathsf{IF} \ b \ \mathsf{THEN} \ c_1 \ \mathsf{ELSE} \ c_2, \sigma \rangle \longrightarrow \sigma'}$$

Structural Operational Semantics

$$\frac{b \; \sigma = \mathsf{False}}{\langle \mathsf{WHILE} \; b \; \mathsf{DO} \; c \; \mathsf{OD}, \sigma \rangle \longrightarrow \sigma}$$

$$\frac{b \ \sigma = \mathsf{True} \quad \langle c, \sigma \rangle \longrightarrow \sigma' \quad \langle \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD}, \sigma' \rangle \longrightarrow \sigma''}{\langle \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD}, \sigma \rangle \longrightarrow \sigma''}$$

Slide 9

DEMO: THE DEFINITIONS IN ISABELLE

Slide 10

Proofs about Programs

Now we know:

- → What programs are: Syntax→ On what they work: State
- → How they work: Semantics

So we can prove properties about programs

Example:

Show that example program from slide 6 implements the factorial.

$$\label{eq:definition} \mbox{lemma } \langle \mbox{factorial}, \sigma \rangle \longrightarrow \sigma' \Longrightarrow \sigma' B = \mbox{fac } (\sigma A)$$
 (where
$$\mbox{fac } 0 = 1, \quad \mbox{fac } (\mbox{Suc } n) = (\mbox{Suc } n) * \mbox{fac } n)$$

Slide 11

6

DEMO: EXAMPLE PROOF

Induction needed for each loop

Is there something easier?

Slide 13

Flovd/Hoare

Idea: describe meaning of program by pre/post conditions

Examples:

$$\begin{cases} \mathsf{True} \} & x \coloneqq 2 \quad \{x=2\} \\ \{y=2\} \quad x \coloneqq 21 * y \quad \{x=42\} \end{cases}$$

$$\{x=n\} \quad \mathsf{IF} \ y < 0 \ \mathsf{THEN} \ x \coloneqq x+y \ \mathsf{ELSE} \ x \coloneqq x-y \quad \{x=n-|y|\}$$

$$\{A=n\} \quad \mathsf{factorial} \quad \{B=\mathsf{fac} \ n\}$$

Proofs: have rules that directly work on such triples

Slide 14

Meaning of a Hoare-Triple

$\{P\}$ c $\{Q\}$

What are the assertions P and Q?

- → Here: again functions from state to bool (shallow embedding of assertions)
- → Other choice: syntax and semantics for assertions (deep embedding)

What does $\{P\}$ c $\{Q\}$ mean?

Partial Correctness:

$$\models \{P\} \ c \ \{Q\} \quad \equiv \quad (\forall \sigma \ \sigma'. \ P \ \sigma \wedge \langle c, \sigma \rangle \longrightarrow \sigma' \Longrightarrow Q \ \sigma')$$

Total Correctness:

$$\models \{P\} \ c \ \{Q\} \quad \equiv \quad (\forall \sigma. \ P \ \sigma \Longrightarrow \exists \sigma'. \ \langle c, \sigma \rangle \longrightarrow \sigma' \land Q \ \sigma')$$

This lecture: partial correctness only (easier)

Slide 15

Hoare Rules

Slide 16

Hoare Rules

$$\frac{\vdash \{P\} \ c_1 \ \{R\} \ \vdash \{R\} \ c_2 \ \{Q\}}{\vdash \{P\} \ c_1; c_2 \ \{Q\}}$$

$$\frac{\vdash \left\{\lambda\sigma.\ P\ \sigma \land b\ \sigma\right\}\ c_1\ \left\{R\right\}\quad \vdash \left\{\lambda\sigma.\ P\ \sigma \land \neg b\ \sigma\right\}\ c_2\ \left\{Q\right\}}{\vdash \left\{P\right\}\quad \mathsf{IF}\ b\ \mathsf{THEN}\ c_1\ \mathsf{ELSE}\ c_2\quad \left\{Q\right\}}$$

$$\frac{\vdash \{\lambda \sigma. \ P \ \sigma \land b \ \sigma\} \ c \ \{P\} \quad \bigwedge \sigma. \ P \ \sigma \land \neg b \ \sigma \Longrightarrow Q \ \sigma}{\vdash \{P\} \quad \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD} \quad \{Q\}}$$

$$\frac{\bigwedge \sigma.\ P\ \sigma \Longrightarrow P'\ \sigma \ \vdash \{P'\}\ c\ \{Q'\} \ \bigwedge \sigma.\ Q'\ \sigma \Longrightarrow Q\ \sigma}{\vdash \{P\}\ c\ \{Q\}}$$

Slide 17

Are the Rules Correct?

Soundness: $\vdash \{P\} \ c \ \{Q\} \Longrightarrow \models \{P\} \ c \ \{Q\}$

Proof: by rule induction on $\vdash \{P\} \ c \ \{Q\}$

Demo: Hoare Logic in Isabelle