
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

a = b = c = . . .

Slide 1

Last time ...

➜ fun, function

➜ Well founded recursion

Slide 2

Copyright NICTA 2012, provided under Creative Commons Attribution License 1

Content

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

➜ Proof & Specification Techniques

• Isar [5]

• Inductively defined sets, rule induction [6b]

• Datatypes, recursion, induction [7c, 8]

• Calculational reasoning, code generation [9]

• Hoare logic, proofs about programs [10d,11,12]

aa1 due; ba2 due; csession break; da3 due

Slide 3

CALCULATIONAL REASONING

Slide 4

Copyright NICTA 2012, provided under Creative Commons Attribution License 2



The Goal

x · x−1 = 1 · (x · x−1)

. . . = 1 · x · x−1

. . . = (x−1)−1
· x−1

· x · x−1

. . . = (x−1)−1
· (x−1

· x) · x−1

. . . = (x−1)−1
· 1 · x−1

. . . = (x−1)−1
· (1 · x−1)

. . . = (x−1)−1
· x−1

. . . = 1

Can we do this in Isabelle?

➜ Simplifier: too eager

➜ Manual: difficult in apply style

➜ Isar: with the methods we know, too verbose

Slide 5

Chains of equations

The Problem

a = b

. . . = c

. . . = d

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

Solution in Isar:

➜ Keywords also and finally to delimit steps

➜ . . . : predefined schematic term variable,

refers to right hand side of last expression

➜ Automatic use of transitivity rules to connect steps

Slide 6

Copyright NICTA 2012, provided under Creative Commons Attribution License 3

also/finally

have ”t0 = t1” [proof] calculation register

also ”t0 = t1”

have ”. . . = t2” [proof]

also ”t0 = t2”
...

...

also ”t0 = tn−1”

have ”· · · = tn” [proof]

finally t0 = tn

show P

— ’finally’ pipes fact ”t0 = tn” into the proof

Slide 7

More about also

➜ Works for all combinations of =, ≤ and <.

➜ Uses all rules declared as [trans].

➜ To view all combinations in Proof General:

Isabelle/Isar → Show me → Transitivity rules

Slide 8

Copyright NICTA 2012, provided under Creative Commons Attribution License 4



Designing [trans] Rules

have = ”l1 ⊙ r1” [proof]

also
have ”. . .⊙ r2” [proof]

also

Anatomy of a [trans] rule:

➜ Usual form: plain transitivity [[l1 ⊙ r1; r1 ⊙ r2]] =⇒ l1 ⊙ r2

➜ More general form: [[P l1 r1;Q r1 r2;A]] =⇒ C l1 r2

Examples:

➜ pure transitivity: [[a = b; b = c]] =⇒ a = c

➜ mixed: [[a ≤ b; b < c]] =⇒ a < c

➜ substitution: [[P a; a = b]] =⇒ P b

➜ antisymmetry: [[a < b; b < a]] =⇒ P

➜ monotonicity: [[a = f b; b < c;
∧

x y. x < y =⇒ f x < f y]] =⇒ a < f c

Slide 9

DEMO

Slide 10

Copyright NICTA 2012, provided under Creative Commons Attribution License 5

HOL as programming language

We have

➜ numbers, arithmetic

➜ recursive datatypes

➜ constant definitions, recursive functions

➜ = a functional programming language

➜ can be used to get fully verified programs

Executed using the simplifier. But:

➜ slow, heavy-weight

➜ does not run stand-alone (without Isabelle)

Slide 11

Generating code

Translate HOL functional programming concepts, i.e.

➜ datatypes

➜ function definitions

➜ inductive predicates

into a stand-alone code in:

➜ SML

➜ Ocaml

➜ Haskell

➜ Scala

Slide 12

Copyright NICTA 2012, provided under Creative Commons Attribution License 6



Syntax

export code <definition names> in SML

module name <module name> file “<file path>”

export code <definition names> in Haskell

module name <module name> file “<directory path>”

Takes a space-separated list of constants for which code shall be generated.

Anything else needed for those is added implicitly Generates ML stucture.

Slide 13

DEMO

Slide 14

Copyright NICTA 2012, provided under Creative Commons Attribution License 7

Program Refinement

Aim: choosing appropriate code equations explicitly

Syntax:

lemma [code] :

<list of equations on function name>

Example: more efficient definition of fibonnacci function

Slide 15

DEMO

Slide 16

Copyright NICTA 2012, provided under Creative Commons Attribution License 8



Inductive Predicates

Inductive specifications turned into equational ones

Example:

append [] ys ys

append xs ys zs =⇒ append (x # xs ) ys (x # zs )

Syntax:

code pred append .

Slide 17

DEMO

Slide 18

Copyright NICTA 2012, provided under Creative Commons Attribution License 9

We have seen today ...

➜ Calculations: also/finally

➜ [trans]-rules

➜ Code generation

Slide 19

10


