

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Content

→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	$[3^a]$
Term rewriting	[4]
→ Proof & Specification Techniques	
• Isar	[5]
 Inductively defined sets, rule induction 	$[6^b]$
 Datatypes, recursion, induction 	[7 ^c , 8]
 Calculational reasoning, code generation 	[9]

[10^d,11,12]

• Hoare logic, proofs about programs

 $^{^{}a}$ a1 due; b a2 due; c session break; d a3 due

DATATYPES IN ISAR


```
proof (cases term)
   case Constructor<sub>1</sub>
next
next
   case (Constructor<sub>k</sub> \vec{x})
   \cdots \vec{x} \cdots
qed
                  case (Constructor<sub>i</sub> \vec{x}) \equiv
                  fix \vec{x} assume Constructor<sub>i</sub>: "term = Constructor_i \vec{x}"
```



```
show P n
proof (induct n)
                    \equiv let ?case = P 0
  case 0
  show ?case
next
  case (Suc n) \equiv fix n assume Suc: P n
                        let ?case = P (Suc n)
  \cdots n \cdots
  show ?case
qed
```



```
show "\bigwedge x. A n \Longrightarrow P n"
proof (induct n)
                                    \equiv fix x assume 0: "A 0"
  case 0
                                        let ?case = "P 0"
  show ?case
next
  case (Suc n)
                                    \equiv fix n and x
                                        assume Suc: "\bigwedge x. A \ n \Longrightarrow P \ n"
                                                         "A (Suc n)"
  \cdots n \cdots
                                        let ?case = "P (Suc n)"
  show ?case
qed
```


DEMO: DATATYPES IN ISAR

DEMO: REGULAR EXPRESSIONS

We have seen today ...

- → Datatypes in Isar
- → Defining regular wxpressions as a data type
- → Playing with recursion and induction