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Content

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

➜ Proof & Specification Techniques

• Isar [5]

• Inductively defined sets, rule induction [6b]

• Datatypes, recursion, induction [7c, 8]

• Calculational reasoning, code generation [9]

• Hoare logic, proofs about programs [10d,11,12]

aa1 due; ba2 due; csession break; da3 due
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Last Time

➜ Sets

➜ Type Definitions

➜ Inductive Definitions
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HOW INDUCTIVE DEFINITIONS WORK
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The Nat Example

0 ∈ N

n ∈ N

n+ 1 ∈ N

➜ N is the set of natural numbers IN

➜ But why not the set of real numbers? 0 ∈ IR, n ∈ IR =⇒ n+ 1 ∈ IR

➜ IN is the smallest set that is consistent with the rules.

Why the smallest set?

➜ Objective: no junk . Only what must be in X shall be in X.

➜ Gives rise to a nice proof principle (rule induction)
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Formally

Rules a1 ∈ X . . . an ∈ X

a ∈ X
with a1, . . . , an, a ∈ A

define set X ⊆ A

Formally: set of rules R ⊆ A set×A (R, X possibly infinite)

Applying rules R to a set B: R̂ B ≡ {x. ∃H. (H, x) ∈ R ∧H ⊆ B}

Example:

R ≡ {({}, 0)} ∪ {({n}, n+ 1). n ∈ IR}

R̂ {3, 6, 10} = {0, 4, 7, 11}
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The Set

Definition: B is R-closed iff R̂ B ⊆ B

Definition: X is the least R-closed subset of A

This does always exist:

Fact: X =
⋂
{B ⊆ A. B R−closed}

Copyright NICTA 2012, provided under Creative Commons Attribution License 7



Generation from Above

A

X

R-closed

R-closed

R-closed
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Rule Induction

0 ∈ N

n ∈ N

n+ 1 ∈ N

induces induction principle

[[P 0;
∧
n. P n =⇒ P (n+ 1)]] =⇒ ∀x ∈ X. P x

In general:

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

∀x ∈ X. P x
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Why does this work?

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

∀x ∈ X. P x

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

says
{x. P x} is R-closed

but: X is the least R-closed set

hence: X ⊆ {x. P x}

which means: ∀x ∈ X. P x

qed
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Rules with side conditions

a1 ∈ X . . . an ∈ X C1 . . . Cm

a ∈ X

induction scheme:

(∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an ∧

C1 ∧ . . . ∧ Cm ∧

{a1, . . . , an} ⊆ X =⇒ P a)

=⇒

∀x ∈ X. P x
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X as Fixpoint

How to compute X?
X =

⋂
{B ⊆ A. B R − closed} hard to work with.

Instead: view X as least fixpoint, X least set with R̂ X = X .

Fixpoints can be approximated by iteration:

X0 = R̂0 {} = {}

X1 = R̂1 {} = rules without hypotheses
...

Xn = R̂n {}

Xω =
⋃

n∈IN
(Rn {}) = X
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Generation from Below

A

R̂0 {}R̂0 {} ∪ R̂1 {}R̂0 {} ∪ R̂1 {} ∪ R̂2 {}R̂0 {} ∪ R̂1 {} ∪ R̂2 {} ∪ . . .
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Does this always work?

Knaster-Tarski Fixpoint Theorem:
Let (A,≤) be a complete lattice, and f :: A ⇒ A a monotone function.
Then the fixpoints of f again form a complete lattice.

Lattice:
Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:
All subsets have a greatest lower bound and least upper bound.

Implications:

➜ least and greatest fixpoints exist (complete lattice always non-empty).

➜ can be reached by (possibly infinite) iteration. (Why?)
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Exercise

Formalize the this lecture in Isabelle:

➜ Define closed f A :: (α set ⇒ α set) ⇒ α set ⇒ bool

➜ Show closed f A ∧ closed f B =⇒ closed f (A ∩B) if f is monotone

(mono is predefined)

➜ Define lfpt f as the intersection of all f -closed sets

➜ Show that lfpt f is a fixpoint of f if f is monotone

➜ Show that lfpt f is the least fixpoint of f

➜ Declare a constant R :: (α set× α) set

➜ Define R̂ :: α set ⇒ α set in terms of R

➜ Show soundness of rule induction using R and lfpt R̂
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RULE INDUCTION IN ISAR
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Inductive definition in Isabelle

inductive X :: α ⇒ bool

where

rule1: ”[[X s;A]] =⇒ X s′”
...

| rulen: . . .
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Rule induction

show ”X x =⇒ P x”
proof (induct rule: X.induct)

fix s and s′ assume ”X s” and ”A” and ”P s”
. . .
show ”P s′”

next
...
qed
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Abbreviations

show ”X x =⇒ P x”
proof (induct rule: X.induct)

case rule1

. . .
show ?case

next
...
next

case rulen

. . .
show ?case

qed
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Implicit selection of induction rule

assume A: ”X x”
...

show ”P x”

using A proof induct
...

qed

lemma assumes A: ”X x” shows ”P x”

using A proof induct
...

qed
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Renaming free variables in rule

case (rulei x1 . . . xk)

Renames first k variables in rulei to x1 . . . xk.
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A remark on style

➜ case (rulei x y) . . . show ?case

is easy to write and maintain

➜ fix x y assume formula . . . show formula′

is easier to read:

• all information is shown locally

• no contextual references (e.g. ?case)
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DEMO: RULE INDUCTION IN ISAR
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We have learned today ...

➜ Formal background of inductive definitions

➜ Definition by intersection

➜ Computation by iteration

➜ Formalisation in Isabelle

➜ Rule Induction in Isar

Copyright NICTA 2012, provided under Creative Commons Attribution License 24


