

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Coi

Content	
	NICIA
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3 ^{<i>a</i>}]
 Term rewriting 	[4]
Proof & Specification Techniques	
• Isar	[5]
 Inductively defined sets, rule induction 	[6 ^b]
 Datatypes, recursion, induction 	[7 ^c , 8]
 Calculational reasoning, code generation 	[9]
 Hoare logic, proofs about programs 	[10 ^d ,11,12]

 a a1 due; b a2 due; c session break; d a3 due

Last Time

- → Sets
- → Type Definitions
- → Inductive Definitions

How INDUCTIVE DEFINITIONS WORK

The Nat Example

$$\frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers \mathbb{N}
- → But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \implies n+1 \in \mathbb{R}$
- \rightarrow \mathbb{N} is the **smallest** set that is **consistent** with the rules.

Why the smallest set?

- \rightarrow Objective: **no junk**. Only what must be in X shall be in X.
- → Gives rise to a nice proof principle (rule induction)

Formally

Rules
$$\frac{a_1 \in X \quad \dots \quad a_n \in X}{a \in X}$$
 with $a_1, \dots, a_n, a \in A$

define set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A$ (R, X possibly infinite)

Applying rules R to a set B: $\hat{R} B \equiv \{x. \exists H. (H, x) \in R \land H \subseteq B\}$

Example:

 $\begin{array}{lll} R & \equiv & \{(\{\},0)\} \cup \{(\{n\},n+1).\; n \in {\rm I\!R}\} \\ \hat{R} \; \{3,6,10\} & = & \{0,4,7,11\} \end{array}$

Copyright NICTA 2012, provided under Creative Commons Attribution License

Definition: *B* is *R*-closed iff $\hat{R} B \subseteq B$

Definition: *X* is the least *R*-closed subset of *A*

This does always exist:

Fact: $X = \bigcap \{B \subseteq A, B R - \mathsf{closed}\}$

$$\frac{n \in N}{n+1 \in N}$$

induces induction principle

$$\llbracket P \ 0; \ \bigwedge n. \ P \ n \Longrightarrow P \ (n+1) \rrbracket \Longrightarrow \forall x \in X. \ P \ x$$

In general:

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$

$$\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a$$
says
$$\{x. \ P \ x\} \text{ is } R\text{-closed}$$

but:	X is the least R -closed set
hence:	$X \subseteq \{x. \ P \ x\}$
which means:	$\forall x \in X. \ P \ x$

qed

Rules with side conditions

$$\frac{a_1 \in X \quad \dots \quad a_n \in X \quad C_1 \quad \dots \quad C_m}{a \in X}$$

induction scheme:

$$(\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \land$$
$$C_1 \land \dots \land C_m \land$$
$$\{a_1, \dots, a_n\} \subseteq X \Longrightarrow P \ a)$$

$$\Longrightarrow$$

 $\forall x \in X. \ P \ x$

X as Fixpoint

How to compute *X*? $X = \bigcap \{B \subseteq A, B, R - \text{closed}\}\$ hard to work with. Instead: view *X* as least fixpoint, *X* least set with $\hat{R} X = X$.

Fixpoints can be approximated by iteration:

$$X_0 = \hat{R}^0 \{\} = \{\}$$

$$X_1 = \hat{R}^1 \{\} = \text{rules without hypotheses}$$

$$\vdots$$

$$X_n = \hat{R}^n \{\}$$

$$X_{\omega} = \bigcup_{n \in \mathbb{N}} (R^n \{\}) = X$$

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f :: A \Rightarrow A$ a monotone function. Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Implications:

- → least and greatest fixpoints exist (complete lattice always non-empty).
- → can be reached by (possibly infinite) iteration. (Why?)

Exercise

Formalize the this lecture in Isabelle:

- → Define closed $f A :: (\alpha \text{ set} \Rightarrow \alpha \text{ set}) \Rightarrow \alpha \text{ set} \Rightarrow \text{bool}$
- → Show closed $f \land A \land closed f \land B \implies closed f (A \cap B)$ if f is monotone (mono is predefined)
- → Define **lfpt** f as the intersection of all f-closed sets
- → Show that lfpt f is a fixpoint of f if f is monotone
- \rightarrow Show that lfpt *f* is the least fixpoint of *f*
- → Declare a constant $R :: (\alpha \text{ set} \times \alpha)$ set
- → Define $\hat{R} :: \alpha$ set $\Rightarrow \alpha$ set in terms of R
- → Show soundness of rule induction using R and lfpt \hat{R}

RULE INDUCTION IN ISAR

Copyright NICTA 2012, provided under Creative Commons Attribution License

inductive $X :: \alpha \Rightarrow \mathsf{bool}$

where

 $rule_1: "\llbracket X \ s; A \rrbracket \Longrightarrow X \ s'"$ \vdots $| rule_n: \dots$

Rule induction


```
show "X \ x \Longrightarrow P \ x"

proof (induct rule: X.induct)

fix s and s' assume "X \ s" and "A" and "P \ s"

....

show "P \ s'"

next

:

qed
```

Abbreviations


```
show "X x \Longrightarrow P x"
proof (induct rule: X.induct)
  case rule<sub>1</sub>
   . . .
  show ?case
next
next
  case rule<sub>n</sub>
   . . .
  show ?case
qed
```

Copyright NICTA 2012, provided under Creative Commons Attribution License


```
assume A: "X x"
```

:

show "P x"

using A proof induct

:

qed

```
lemma assumes A: "X x" shows "P x"
```

using A proof induct

•

qed

case (rule_i $x_1 \dots x_k$)

Renames first k variables in rule_i to $x_1 \dots x_k$.

A remark on style

- → case (rule_i x y) ... show ?case is easy to write and maintain
- → fix x y assume formula ... show formula' is easier to read:
 - all information is shown locally
 - no contextual references (e.g. ?case)

DEMO: RULE INDUCTION IN ISAR

Copyright NICTA 2012, provided under Creative Commons Attribution License

- → Formal background of inductive definitions
- → Definition by intersection
- → Computation by iteration
- → Formalisation in Isabelle
- → Rule Induction in Isar