

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Slide 1

Content	NUCTA
	NICTA
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
Lambda Calculus, natural deduction	[1,2]
Higher Order Logic	$[3^{a}]$
Term rewriting	[4]
→ Proof & Specification Techniques	
• Isar	[5]
 Inductively defined sets, rule induction 	$[6^{b}]$
 Datatypes, recursion, induction 	[7 ^c , 8]
 Calculational reasoning, code generation 	[9]
 Hoare logic, proofs about programs 	[10 ^d ,11,12]

 $[^]a{\rm a1}$ due; $^b{\rm a2}$ due; $^c{\rm session}$ break; $^d{\rm a3}$ due

Slide 2

Last Time

- → More Isar
- → Fix/Obtain
- → Moreover/Ultimately
- → Mixing Proof Styles

Slide 3

SPECIFICATION TECHNIQUES: SETS

Slide 4

Sets in Isabelle

Type 'a set: sets over type 'a

- → {}, $\{e_1, \ldots, e_n\}$, $\{x. P x\}$
- $\rightarrow e \in A, A \subseteq B$
- \rightarrow $A \cup B$, $A \cap B$, A B, -A
- $\rightarrow \bigcup x \in A. \ B \ x, \quad \bigcap x \in A. \ B \ x, \quad \bigcap A, \quad \bigcup A$
- **→** {*i..j*}
- ightharpoonup insert :: $\alpha \Rightarrow \alpha$ set $\Rightarrow \alpha$ set
- → ...

Slide 5

Proofs about Sets

Natural deduction proofs:

- ightharpoonup equalityl: $[\![A\subseteq B;\ B\subseteq A]\!] \Longrightarrow A=B$
- \rightarrow subsetl: $(\bigwedge x. \ x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$
- → ... (see Tutorial)

Bounded Quantifiers

- $\Rightarrow \forall x \in A. \ P \ x \equiv \forall x. \ x \in A \longrightarrow P \ x$
- $\Rightarrow \exists x \in A. \ P \ x \equiv \exists x. \ x \in A \land P \ x$
- \rightarrow ball: $(\bigwedge x. \ x \in A \Longrightarrow P \ x) \Longrightarrow \forall x \in A. \ P \ x$
- ightharpoonup bspec: $[\![\forall x \in A.\ P\ x; x \in A]\!] \Longrightarrow P\ x$
- \rightarrow bexl: $\llbracket P \ x; x \in A \rrbracket \Longrightarrow \exists x \in A. \ P \ x$

Slide 7

NICTA

DEMO: SETS

Slide 8

Slide 6

3

The Three Basic Ways of Introducing Types

→ typedecl: by name only

Example: **typedecl** names
Introduces new type *names* without any further assumptions

→ type_synonym: by abbreviation

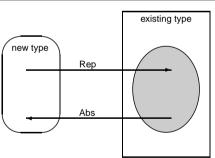
Example: **type_synonym** α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ " Introduces abbreviation *rel* for existing type $\alpha \Rightarrow \alpha \Rightarrow bool$ Type abbreviations are immediately expanded internally

→ typedef: by definiton as a set

Example: **typedef** new_type = "{some set}" <proof> Introduces a new type as a subset of an existing type. The proof shows that the set on the rhs in non-empty.

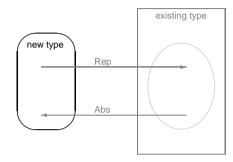
Slide 9

How typedef works



Slide 10

How typedef works



Slide 11

Example: Pairs

 (α,β) Prod

- ① Pick existing type: $\alpha \Rightarrow \beta \Rightarrow \mathsf{bool}$
- ② Identify subset:

 (α, β) Prod = $\{f. \exists a \ b. \ f = \lambda(x :: \alpha) \ (y :: \beta). \ x = a \land y = b\}$

- 3 We get from Isabelle:
 - functions Abs_Prod, Rep_Prod
 - both injective
 - Abs_Prod (Rep_Prod x) = x
- We now can:
 - define constants Pair, fst, snd in terms of Abs_Prod and Rep_Prod
 - derive all characteristic theorems
 - forget about Rep/Abs, use characteristic theorems instead

Slide 12

DEMO: INTRODUCING NEW TYPES

Slide 13

INDUCTIVE DEFINITIONS

Slide 14

Example

$$\frac{[\![e]\!]\sigma = v}{\langle \mathsf{skip}, \sigma \rangle \longrightarrow \sigma} \qquad \frac{[\![e]\!]\sigma = v}{\langle \mathsf{x} := \mathsf{e}, \sigma \rangle \longrightarrow \sigma[x \mapsto v]}$$

$$\frac{\langle c_1, \sigma \rangle \longrightarrow \sigma' \quad \langle c_2, \sigma' \rangle \longrightarrow \sigma''}{\langle c_1; c_2, \sigma \rangle \longrightarrow \sigma''}$$

$$\frac{[\![b]\!]\sigma = \mathsf{False}}{\langle \mathsf{while}\; b\; \mathsf{do}\; c, \sigma \rangle \longrightarrow \sigma}$$

Slide 15

What does this mean?

- $ightharpoonup \langle c,\sigma \rangle \longrightarrow \sigma' \quad \text{ fancy syntax for a relation } \quad (c,\sigma,\sigma') \in E$
- \rightarrow relations are sets: $E:: (com \times state \times state)$ set
- → the rules define a set inductively

But which set?

Slide 16

Simpler Example

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

- $\rightarrow N$ is the set of natural numbers \mathbb{N}
- ightharpoonup But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- → N is the smallest set that is consistent with the rules.

Why the smallest set?

- → Objective: **no junk**. Only what must be in *X* shall be in *X*.
- → Gives rise to a nice proof principle (rule induction)
- → Alternative (greatest set) occasionally also useful: coinduction

Slide 17

Rule Induction

$$n \in N$$

induces induction principle

 $0 \in N$

$$\llbracket P \ 0; \ \bigwedge n. \ P \ n \Longrightarrow P \ (n+1) \rrbracket \Longrightarrow \forall x \in X. \ P \ x$$

Slide 18

DEMO: INDUCTIVE DEFINITONS

Slide 19

We have learned today ...

- → Sets
- → Type Definitions
- → Inductive Definitions

Slide 20

10