

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Content

→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	$[3^a]$
Term rewriting	[4]
→ Proof & Specification Techniques	
• Isar	[5]
 Inductively defined sets, rule induction 	$[6^b]$
 Datatypes, recursion, induction 	$[7^c, 8]$
 Calculational reasoning, code generation 	[9]

[10^d,11,12]

• Hoare logic, proofs about programs

 $^{^{}a}$ a1 due; b a2 due; c session break; d a3 due

DEFINING HIGHER ORDER LOGIC

What is Higher Order Logic?

→ Propositional Logic:

- no quantifiers
- all variables have type bool

→ First Order Logic:

- quantification over values, but not over functions and predicates,
- terms and formulas syntactically distinct

→ Higher Order Logic:

- quantification over everything, including predicates
- consistency by types
- formula = term of type bool
- definition built on λ^{\rightarrow} with certain default types and constants

Defining Higher Order Logic

Default types:

bool

 \rightarrow _

ind

- \rightarrow **bool** sometimes called o
- \Rightarrow sometimes called fun

Default Constants:

 \longrightarrow :: $bool \Rightarrow bool \Rightarrow bool$

= :: $\alpha \Rightarrow \alpha \Rightarrow bool$

 ϵ :: $(\alpha \Rightarrow bool) \Rightarrow \alpha$

Higher Order Abstract Syntax

Problem: Define syntax for binders like \forall , \exists , ε

One approach: $\forall :: var \Rightarrow term \Rightarrow bool$

Drawback: need to think about substitution, α conversion again.

But: Already have binder, substitution, α conversion in meta logic

 λ

So: Use λ to encode all other binders.

Higher Order Abstract Syntax

Example:

$$\mathsf{ALL} :: (\alpha \Rightarrow bool) \Rightarrow bool$$

HOAS	usual syntax
$ALL\;(\lambda x.\;x=2)$	$\forall x. \ x=2$
$ALL\ P$	$\forall x. \ P \ x$

Isabelle can translate usual binder syntax into HOAS.

Side Track: Syntax Declarations in Isabelle

→ mixfix:

consts drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("_-, _ \vdash _") Legal syntax now: $\Gamma, \Pi \vdash F$

→ priorities:

pattern can be annotated with priorities to indicate binding strength

Example: drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("_-, _ \vdash _" [30, 0, 20] 60)

→ infixl/infixr: short form for left/right associative binary operators

Example: or :: $bool \Rightarrow bool$ (infixr " \vee " 30)

→ binders: declaration must be of the form

$$c :: (\tau_1 \Rightarrow \tau_2) \Rightarrow \tau_3 \text{ (binder "}B")$$

B x. P x translated into c P (and vice versa)

Example ALL :: $(\alpha \Rightarrow bool) \Rightarrow bool$ (binder " \forall " 10)

More (including pretty printing) in Isabelle Reference Manual (7.3)

Back to HOL

Base: $bool, \Rightarrow, ind =, \longrightarrow, \varepsilon$

And the rest is definitions:

$$\begin{array}{ll} \operatorname{True} & \equiv (\lambda x :: bool. \ x) = (\lambda x. \ x) \\ \operatorname{All} \ P & \equiv P = (\lambda x. \ \operatorname{True}) \\ \operatorname{Ex} \ P & \equiv \forall Q. \ (\forall x. \ P \ x \longrightarrow Q) \longrightarrow Q \\ \operatorname{False} & \equiv \forall P. \ P \\ \neg P & \equiv P \longrightarrow \operatorname{False} \\ P \wedge Q & \equiv \forall R. \ (P \longrightarrow Q \longrightarrow R) \longrightarrow R \\ P \vee Q & \equiv \forall R. \ (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R \\ \operatorname{If} \ P \ x \ y \equiv \operatorname{SOME} \ z. \ (P = \operatorname{True} \longrightarrow z = x) \wedge (P = \operatorname{False} \longrightarrow z = y) \\ \operatorname{inj} \ f & \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y \\ \operatorname{surj} \ f & \equiv \forall y. \ \exists x. \ y = f \ x \\ \end{array}$$

The Axioms of HOL

$$\frac{s=t \quad P \ s}{P \ t} \text{ subst} \qquad \frac{\bigwedge x. \ f \ x=g \ x}{(\lambda x. \ f \ x)=(\lambda x. \ g \ x)} \text{ ext}$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \text{ impl} \qquad \frac{P \longrightarrow Q \quad P}{Q} \text{ mp}$$

$$\overline{(P \longrightarrow Q) \longrightarrow (Q \longrightarrow P) \longrightarrow (P=Q)} \text{ iff}$$

$$\overline{P=\text{True} \lor P=\text{False}} \text{ True_or_False}$$

$$\frac{P \ ?x}{P \ (\text{SOME} \ x. \ P \ x)} \text{ somel}$$

$$\overline{\exists f:: ind \Rightarrow ind. \text{ inj} \ f \land \neg \text{surj} \ f} \text{ infty}$$

That's it.

- → 3 basic constants
- → 3 basic types
- → 9 axioms

With this you can define and derive all the rest.

Isabelle knows 2 more axioms:

$$\frac{x=y}{x\equiv y}$$
 eq_reflection $\frac{x=y}{(\text{THE }x.\; x=a)=a}$ the_eq_trivial

DEMO: THE DEFINITIONS IN ISABELLE

In the following, we will

- → look at the definitions in more detail
- → derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

```
\begin{array}{l} \textbf{lemma} \; [name:] \\ \textbf{assumes} \; [name_1:] \; "< prop >_1" \\ \textbf{assumes} \; [name_2:] \; "< prop >_2" \\ \vdots \\ \textbf{shows} \; " < prop > " \; < proof > \\ \end{array} \begin{array}{l} \textbf{proves:} \; [ \; < prop >_1; < prop >_2; \dots ] \implies < prop >_2 \\ \end{array}
```

True

consts True :: bool

True $\equiv (\lambda x :: bool. \ x) = (\lambda x. \ x)$

Intuition:

right hand side is always true

Proof Rules:

 $\frac{}{\mathsf{True}}$ Truel

Proof:

$$\frac{\overline{(\lambda x :: bool. \ x) = (\lambda x. \ x)}}{\mathsf{True}} \ \ \underset{\mathsf{unfold True_def}}{\mathsf{refl}}$$

DEMO

Universal Quantifier

consts ALL ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$

$$\mathsf{ALL}\,P \ \equiv \ P = (\lambda x.\,\mathsf{True})$$

Intuition:

- \rightarrow ALL *P* is Higher Order Abstract Syntax for $\forall x. P x.$
- \rightarrow P is a function that takes an x and yields a truth values.
- \rightarrow ALL P should be true iff P yields true for all x, i.e. if it is equivalent to the function λx . True.

Proof Rules:

$$\frac{\bigwedge x. \ P \ x}{\forall x. \ P \ x}$$
 alll $\frac{\forall x. \ P \ x}{R}$ allE

False

consts False :: bool

False $\equiv \forall P.P$

Intuition:

Everything can be derived from *False*.

Proof Rules:

$$\frac{\mathsf{False}}{P} \; \mathsf{FalseE} \qquad \frac{\mathsf{True} \neq \mathsf{False}}{\mathsf{True} \neq \mathsf{False}}$$

Negation

consts Not :: $bool \Rightarrow bool (\neg _)$

$$\neg P \equiv P \longrightarrow \mathsf{False}$$

Intuition:

Try P = True and P = False and the traditional truth table for \longrightarrow .

Proof Rules:

$$\frac{A \Longrightarrow False}{\neg A}$$
 not $\frac{\neg A \quad A}{P}$ not E

Existential Quantifier

consts EX ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$

$$\mathsf{EX}\ P\ \equiv\ \forall Q.\ (\forall x.\ P\ x \longrightarrow Q) \longrightarrow Q$$

Intuition:

- \rightarrow EX P is HOAS for $\exists x. \ P \ x$. (like \forall)
- → Right hand side is characterization of ∃ with ∀ and →
- \rightarrow Note that inner \forall binds wide: $(\forall x. P x \longrightarrow Q)$
- ightharpoonup Remember lemma from last time: $(\forall x.\ P\ x \longrightarrow Q) = ((\exists x.\ P\ x) \longrightarrow Q)$

Proof Rules:

$$\frac{P ? x}{\exists x. \ P \ x} \ \text{exI} \qquad \frac{\exists x. \ P \ x \qquad \bigwedge x. \ P \ x \Longrightarrow R}{R} \ \text{exE}$$

Conjunction

consts And ::
$$bool \Rightarrow bool (_ \land _)$$

 $P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$

Intuition:

- → Mirrors proof rules for ∧
- \rightarrow Try truth table for P, Q, and R

Proof Rules:

$$\frac{A \quad B}{A \wedge B} \text{ conjl} \qquad \frac{A \wedge B \quad \llbracket A;B \rrbracket \Longrightarrow C}{C} \text{ conjE}$$

Disjunction

consts Or ::
$$bool \Rightarrow bool (_ \lor _)$$

 $P \lor Q \equiv \forall R. (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$

Intuition:

- → Mirrors proof rules for ∨ (case distinction)
- \rightarrow Try truth table for P, Q, and R

Proof Rules:

$$\frac{A}{A \vee B} \frac{B}{A \vee B}$$
 disjl1/2 $\frac{A \vee B}{C} \stackrel{A \otimes C}{\longrightarrow} \frac{B \Longrightarrow C}{C}$ disjE

If-Then-Else

consts If ::
$$bool \Rightarrow \alpha \Rightarrow \alpha \text{ (if_then_else_)}$$

If $P \ x \ y \equiv \mathsf{SOME} \ z. \ (P = \mathsf{True} \longrightarrow z = x) \land (P = \mathsf{False} \longrightarrow z = y)$

Intuition:

- \rightarrow for P = True, right hand side collapses to SOME z. z = x
- \rightarrow for P = False, right hand side collapses to SOME z. z = y

Proof Rules:

$$\overline{\text{if True then } s \text{ else } t = s}$$
 if $\overline{\text{Irue then } s \text{ else } t = t}$ if $\overline{\text{False then } s \text{ else } t = t}$

THAT WAS HOL

More on Automation

Last time: safe and unsafe rule, heuristics: use safe before unsafe

This can be automated

Syntax:

[<kind>!] for safe rules (<kind> one of intro, elim, dest)

[<kind>] for unsafe rules

Application (roughly):

do safe rules first, search/backtrack on unsafe rules only

Example:

declare attribute globally remove attribute gloabllay use locally delete locally

declare conjl [intro!] allE [elim]
declare allE [rule del]
apply (blast intro: somel)
apply (blast del: conjl)

DEMO: AUTOMATION

We have learned today ...

- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules
- → More automation