NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

HOL

Content
NICTA
[Intro & motivation, getting started [1]
[1 Foundations & Principles
e Lambda Calculus, natural deduction [1,2]
e Higher Order Logic [39]
e Term rewriting [4]
[1 Proof & Specification Techniques
o |sar [5]
e Inductively defined sets, rule induction [6°]
e Datatypes, recursion, induction [7¢, 8]
e Calculational reasoning, code generation [9]
e Hoare logic, proofs about programs [104,11,12]

2al due; *a2 due: “session break: ¢a3 due

NICTA

DEFINING HIGHER ORDER LOGIC

(Jo

What is Higher Order Logic?

NICTA

[1 Propositional Logic:

e NO guantifiers
e all variables have type bool

[First Order Logic:

e (uantification over values, but not over functions and predicates,
e terms and formulas syntactically distinct

[J Higher Order Logic:

e (uantification over everything, including predicates

e consistency by types

e formula = term of type bool

e definition built on A\™ with certain default types and constants

Defining Higher Order Logic

NICTA
Default types:

bool .= Ind

[1 bool sometimes called o
[1 = sometimes called fun

Default Constants:

— 1 bool = bool = bool
— o= a = bool
€ : (a=bool) = «

Higher Order Abstract Syntax

NICTA
Problem: Define syntax for binders like V, 4, ¢

One approach: V :: var = term = bool
Drawback: need to think about substitution, o conversion again.

But: Already have binder, substitution, o conversion in meta logic

A

So: Use)\ to encode all other binders.

Higher Order Abstract Syntax

NICTA
Example:

ALL :: (o« = bool) = bool

HOAS usual syntax
ALL (\z. x = 2) Ve, oz =2
ALL P V. P x

Isabelle can translate usual binder syntax into HOAS.

(Jo

Side Track: Syntax Declarations in Isabelle

NICTA

mixfix:

consts drvbl:: ¢t = ct = fm = bool ("_,_ F)

Legal syntax now: I',II+ F

priorities:

pattern can be annotated with priorities to indicate binding strength
Example: drvbl:: ¢t = ct = fm = bool ("_,_ F 7 [30,0,20] 60)
infixl/infixr : short form for left/right associative binary operators
Example: or :: bool = bool = bool (infixr” V7" 30)

binders: declaration must be of the form

c: (11 = 1) = 13 (binder”B” < p >)

B z. P x translated into ¢ P (and vice versa)

Example ALL :: (o = bool) = bool (binder V" 10)

More (including pretty printing) in Isabelle Reference Manual (7.3)

Back to HOL

NICTA

Base: bool, =, 1nd L —>, €

And the rest is definitions:

True = (Az :: bool. x) = (Ax. x)

Al P =P = (Az. True)

ExP =VQ.(Vx. Px — Q) — Q

False =VP. P

- P = P — False

PANQ@ =VR.(P—Q—R)— R

PvQ =VR.(P—R)— (Q—R)— R

If Pxy=SOME z. (P =True — z=2x)A (P = False — z = y)
injf =Vey. fr=fy—zx=y

surj f =VYy.dr.y=f=x

The Axioms of HOL

—reft =L LS gypet Ao fr=gz
t=1¢'® Pt (Az. fz)=(A\z. g x)
Iijgimpl P—>QQ Pmp
P—Q) — Q=P —@=q "

P = True V P = False
P 7z

P (SOME z. P x)

True_or_False

somel

df ::ind = ind. inj f A\ —surj f

Infty

ext

()@

NICTA

10

That's It.

[1 3 basic constants
[1 3 basic types
1 9 axioms

With this you can define and derive all the rest.

Isabelle knows 2 more axioms:

T =1y fect
7=y ed-retlection (THEz. x =a) =a

the_eq_trivial

NICTA

11

DEMO: THE DEFINITIONS IN ISABELLE

NICTA

12

Deriving Proof Rules

NICTA
In the following, we will

[1 look at the definitions in more detalil
[1 derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

lemma [name :]
assumes [name; :| "< prop >1”
assumes [names :] "< prop >3”

shows 7 < prop >7 < proof >

proves: [< prop >1;< prop >o;...] =< prop >

13

True

consts True :: bool
True = (A\z :: bool. x) = (Ax. x)

Intuition:
right hand side is always true

Proof Rules :
—— Truel
True

Proof :

(Az :: bool. x) = (Ax. x)
True

refl
unfold True_def

NICTA

14

DEMO

NICTA

15

Universal Quantifier

consts ALL :: (a = bool) = bool
ALLP = P = (Ax. True)

Intuition:

[1 ALL P is Higher Order Abstract Syntax for Vz. P x.
[J P is a function that takes an = and yields a truth values.
[0 ALL P should be true iff P yields true for all z, i.e.

If it is equivalent to the function Ax. True.

Proof Rules :

/\ZU-Pafa”I Ve. Px P7¢t — R
Ve. P x R

Proof : Isabelle Demo

alle

NICTA

16

False

consts False :: bool
False = VP.P

Intuition:
Everything can be derived from False.

Proof Rules :
False

P

FalseE

Proof : Isabelle Demo

True # False

NICTA

17

Negation

consts Not :: bool = bool (— _)
- P = P — False

Intuition:
Try P = True and P = False and the traditional truth table for —.

Proof Rules :

A = False Aot -A A
—-A P

notkE

Proof : Isabelle Demo

NICTA

18

Existential Quantifier

NICTA
consts EX :: (a = bool) = bool

EXP = VQ. (V. Px — Q) — Q

Intuition:

[0 EX P is HOAS for dz. P z. (like V)

[1 Right hand side is characterization of 4 with V and —

[0 Note that inner V binds wide: (Vz. Pz — Q)

[0 Remember lemma from last time: (Vx. Pz — Q) = ((Fz. P x) — Q)

Proof Rules :

P 7 dJr.Px Axz. Px—=— R

9 P 7 exl| 2 exkE

Proof : Isabelle Demo

19

Conjunction

consts And :: bool = bool = bool (- N _)
PANQ=VR.(P—Q —R)— R

Intuition:

[1 Mirrors proof rules for A
(1 Try truth table for P, Q, and R

Proof Rules :
A B ANDB

[A; B] = C

AND conjl

Proof : Isabelle Demo

conjE

NICTA

20

Disjunction

consts Or :: bool = bool = bool (- V _)
PVQQ=VYR.(P—R)— (Q— R) — R

Intuition:

[1 Mirrors proof rules for v (case distinction)
(1 Try truth table for P, Q, and R

Proof Rules :
A B

AVvVB A=—C B=—C

TVE AVE disjl1/2

Proof : Isabelle Demo

C

disiE

NICTA

21

If-Then-Else
NICTA

consts If :: bool = a = a = « (if_ then _else _)
If Pry = SOME z. (P =True — z =) A (P = False — z = y)
Intuition:

[1 for P = True, right hand side collapses to SOME z. z = x

[1 for P = False, right hand side collapses to SOME z. z = y
Proof Rules :

if True then selset =s IFTrue if False then selset =t fFalse

Proof : Isabelle Demo

22

THAT WAS HOL

NICTA

23

(Jo

NICTA

More on Automation

Last time : safe and unsafe rule, heuristics: use safe before unsafe

This can be automated

Syntax :
|<kind>!] for safe rules (<kind> one of intro, elim, dest)
[<kind>] for unsafe rules

Application (roughly):
do safe rules first, search/backtrack on unsafe rules only

declare attribute globally declare conjl [intro!] allE [elim]
remove attribute gloabllay declare allE [rule del]

use locally apply (blast intro: somel)
delete locally apply (blast del: conjl)

Example:

24

DEMO: AUTOMATION

NICTA

25

We have learned today ...

OO O O

Defining HOL

Higher Order Abstract Syntax
Deriving proof rules

More automation

NICTA

26

