NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

)\%

Last time...

O 0O 0O d oo

A calculus syntax

free variables, substitution

£ reduction

« and n conversion

S reduction is confluent

A calculus is expressive (turing complete)
A calculus is inconsistent

NICTA

Content
NICTA
[Intro & motivation, getting started [1]
[1 Foundations & Principles
e Lambda Calculus, natural deduction [1,2]
e Higher Order Logic [39]
e Term rewriting [4]
[1 Proof & Specification Techniques
o |sar [5]
e Inductively defined sets, rule induction [6°]
e Datatypes, recursion, induction [7¢, 8]
e Calculational reasoning, code generation [9]
e Hoare logic, proofs about programs [104,11,12]

2al due; *a2 due: “session break: ¢a3 due

)\ calculus is Inconsistent

NICTA
Can find term R such that R R =g not (R R)

There are more terms that do not make sense:
12, truefal se, etc.

Solution : rule out ill-formed terms by using types.
(Church 1940)

Introducing types

ldea: assign a type to each “sensible” A term.

Examples:

[J for termthastype a write t:: «

[if x has type athen Ax. x is a function from «a to «
Write: (Az. z) :: a = «

[J for st to be sensible:
s must be function
t must be right type for parameter

Ifs:a=pfandt: athen(st): g3

NICTA

NICTA

THAT'S ABOUT IT

NICTA

NOW FORMALLY AGAIN

Syntax for \™

NICTA
Terms: ¢t == v | c | (tt) | (Ax.?)
v,x €V, ceC, V, C setsofnames

Types: 7 == b | v |7 =71
b € {bool ,int,...} base types
v € {a,p,...} type variables

a=p=7 = a=(B=7)

Context I':

I[': function from variable and constant names to types.

Term t has type 7 in context I 'Htor

Examples

NICTA
'E(Az.x) sa=«

ly < int]kFy:int
[z < bool | - (A\y. y) z :: bool

[FAfz. feu(a=0)=a=0

Aterm t is well typed or type correct
If thereareI' and 7 suchthatI' ¢ :: 7

Type Checking Rules

Variables:

Application:

Abstraction:

I'Ex:T(x)

I't1m=m TI'kFtyim

I' - (tl tg) |

Pl <~ n|Ftom
Fl‘()\$ t) T = T2

NICTA

10

Example Type Derivation:

z— a,y+ BlFz:a«
z—a]lFly.xz:: 0=«

|FAXy.z:a= 0=«

NICTA

11

More complex Example

'-fra=(a=p) T'Fz:a«a
I'-fxoa=p I'-2: «

I'-fxx:p
fa=a=FlFX. fzaxra=p

|FAfa. fzax:(a=a=0)=>a=0

'=[f+a=a= 6,z q

NICTA

12

More general Types

NICTA
A term can have more than one type.

Example: []F Az. x :: bool = bool

|FA. 2z a= «

Some types are more general than others:

T < o ifthereis a substitution S such that = S(o)

Examples:

int ==bool < a=p < [B=a X a=a

13

Most general Types

NICTA
Fact. each type correct term has a most general type

Formally:
'tter = doTktuoANo'.T'Ht:o = o <o)

It can be found by executing the typing rules backwards.

[type checking: checkingifI' ¢ :: 7 for given I and 7
[type inference: computing I’ and 7 suchthatT' ¢ :: 7

Type checking and type inference on A\~ are decidable.

14

What about 5 reduction?

Definition of /3 reduction stays the same.

Fact: Well typed terms stay well typed during 3 reduction
Formally: I'FsurT ANs—pgt=T1TFturT

This property is called subject reduction

NICTA

15

What about termination?

NICTA
3 reduction in A7 always terminates.

(Alan Turing, 1942)

[1 =g is decidable

To decide if s =3 t, reduce s and t to normal form (always exists, because — g
terminates), and compare result.

[0 =apn Is decidable

This is why Isabelle can automatically reduce each term to g7 normal form.

16

(Jo

What does this mean for Expressiveness?
NICTA

Not all computable functions can be expressed in A7

How can typed functional languages then be turing complete?

Fact:
Each computable function can be encoded as closed, type correct A~ term
usingY = (r=17)=7withY t —3 ¢ (Y t) as only constant.

[1 Y is called fix point operator
[1 used for recursion
[J lose decidability (what does Y (Ax. x) reduce to?)

17

Types and Terms in Isabelle

NICTA

Types: 7 == b | v | vaC | 17=>71](1,....7T) K
b € {bool ,int,...} base types
v e{a,B,...} type variables
K € {set,list,...} type constructors
C € {order,linord,...} type classes

Terms: t == v | c | 7v | (tt) | (A\z. 1)
v,xr eV, ceC, V, C setsof names

[1 type constructors : construct a new type out of a parameter type.
Example:int |i st

[1 type classes : restrict type variables to a class defined by axioms.
Example: « :: order

[1 schematic variables : variables that can be instantiated.

18

Type Classes

[1 similar to Haskell's type classes, but with semantic properties

class order =
assumes order_refl: "z < z”
assumes order_trans: "z < y;y < z] = x < 27

[1 theorems can be proved in the abstract

lemma order_less_trans: ” A x :Ya ::order. [x < y;y < 2] = x < 27
[1 can be used for subtyping

class linorder = order +
assumes linorder_linear: "z <y vy < z”

can be instantiated

instance nat :: ”{order, linorder}” by ...

NICTA

19

(Jo

Schematic Variables

[]

NICTA

X Y
XAY
X and Y must be instantiated to apply the rule

But: lemma “z+0=0+2"

x 1S free
convention: lemma must be true for all «
during the proof , x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

20

Higher Order Unification

NICTA

Unification:
Find substitution o on variables for terms s, t such that o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that o(s) =43, o(t)

Examples:
TXATYY =a8p TAX X +— x,7Y + x|
P x =afn TAX 7P + Ax. x N\ 1]
P(?fx) =apy Y 7f < x. x,?7Y < P]

Higher Order: schematic variables can be functions.

21

(Jo

Higher Order Unification
NICTA

[1 Unification modulo a8 (Higher Order Unification) is semi-decidable
(1 Unification modulo a8n is undecidable
[J Higher Order Unification has possibly infinitely many solutions

But:

[1 Most cases are well-behaved
[J Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

0 is aterm in 8 normal form where
[1 each occurrence of a schematic variable is of the form ?f ¢, ... t,
[1 andthet; ... t, are n-convertible into n distinct bound variables

22

We have learned so far...

O O 0O o

Simply typed lambda calculus: \™

Typing rules for A7, type variables, type contexts
B-reduction in A7 satisfies subject reduction
B-reduction in A~ always terminates

Types and terms in Isabelle

NICTA

23

