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Last time...
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A calculus syntax

free variables, substitution

£ reduction

« and n conversion

S reduction is confluent

A calculus is expressive (turing complete)
A calculus is inconsistent
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[ Intro & motivation, getting started [1]
[1 Foundations & Principles
e Lambda Calculus, natural deduction [1,2]
e Higher Order Logic [39]
e Term rewriting [4]
[1 Proof & Specification Techniques
o |sar [5]
e Inductively defined sets, rule induction [6°]
e Datatypes, recursion, induction [7¢, 8]
e Calculational reasoning, code generation [9]
e Hoare logic, proofs about programs [104,11,12]
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)\ calculus is Inconsistent

NICTA
Can find term R such that R R =g not (R R)

There are more terms that do not make sense:
12, truefal se, etc.

Solution : rule out ill-formed terms by using types.
(Church 1940)



Introducing types

ldea: assign a type to each “sensible” A term.

Examples:

[J for termthastype a write t:: «

[ if x has type athen Ax. x is a function from «a to «
Write: (Az. z) :: a = «

[J for st to be sensible:
s must be function
t must be right type for parameter

Ifs:a=pfandt: athen(st): g3
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THAT'S ABOUT IT
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Syntax for \™
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Terms: ¢t == v | c | (tt) | (Ax.?)
v,x €V, ceC, V, C setsofnames

Types: 7 == b | v |7 =71
b € {bool ,int,...} base types
v € {a,p,...} type variables

a=p=7 = a=(B=7)

Context I':

I[': function from variable and constant names to types.

Term t has type 7 in context I 'Htor



Examples

NICTA
'E(Az.x) sa=«

ly < int]kFy:int
[z < bool | - (A\y. y) z :: bool

[FAfz. feu(a=0)=a=0

Aterm t is well typed or type correct
If thereareI' and 7 suchthatI' ¢ :: 7



Type Checking Rules

Variables:

Application:

Abstraction:

I'Ex:T(x)

I't1m=m TI'kFtyim

I' - (tl tg) |

Pl <~ n|Ftom
Fl‘()\$ t) T = T2
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Example Type Derivation:

z— a,y+ BlFz:a«
z—a]lFly.xz:: 0=«

|FAXy.z:a= 0=«
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More complex Example

'-fra=(a=p) T'Fz:a«a
I'-fxoa=p I'-2: «

I'-fxx:p
fa=a=FlFX. fzaxra=p

|FAfa. fzax:(a=a=0)=>a=0

'=[f+a=a= 6,z q
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More general Types
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A term can have more than one type.

Example: []F Az. x :: bool = bool

|FA. 2z a= «

Some types are more general than others:

T < o ifthereis a substitution S such that = S(o)

Examples:

int ==bool < a=p < [B=a X a=a
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Most general Types
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Fact. each type correct term has a most general type

Formally:
'tter = doTktuoANo'.T'Ht:o = o <o)

It can be found by executing the typing rules backwards.

[ type checking: checkingifI' ¢ :: 7 for given I and 7
[ type inference: computing I’ and 7 suchthatT' ¢ :: 7

Type checking and type inference on A\~ are decidable.
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What about 5 reduction?

Definition of /3 reduction stays the same.

Fact: Well typed terms stay well typed during 3 reduction
Formally: I'FsurT ANs—pgt=T1TFturT

This property is called subject reduction

NICTA
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What about termination?
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3 reduction in A7 always terminates.

(Alan Turing, 1942)

[1 =g is decidable

To decide if s =3 t, reduce s and t to normal form (always exists, because — g
terminates), and compare result.

[0 =apn Is decidable

This is why Isabelle can automatically reduce each term to g7 normal form.
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What does this mean for Expressiveness?
NICTA

Not all computable functions can be expressed in A7

How can typed functional languages then be turing complete?

Fact:
Each computable function can be encoded as closed, type correct A~ term
usingY = (r=17)=7withY t —3 ¢ (Y t) as only constant.

[1 Y is called fix point operator
[1 used for recursion
[J lose decidability (what does Y (Ax. x) reduce to?)
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Types and Terms in Isabelle
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Types: 7 == b | v | vaC | 17=>71](1,....7T) K
b € {bool ,int,...} base types
v e{a,B,...} type variables
K € {set,list,...} type constructors
C € {order,linord,...} type classes

Terms: t == v | c | 7v | (tt) | (A\z. 1)
v,xr eV, ceC, V, C setsof names

[1 type constructors : construct a new type out of a parameter type.
Example:int |i st

[1 type classes : restrict type variables to a class defined by axioms.
Example: « :: order

[1 schematic variables : variables that can be instantiated.
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Type Classes

[1 similar to Haskell's type classes, but with semantic properties

class order =
assumes order_refl: "z < z”
assumes order_trans: "z < y;y < z] = x < 27

[1 theorems can be proved in the abstract

lemma order_less_trans: ” A x :Ya ::order. [x < y;y < 2] = x < 27
[1 can be used for subtyping

class linorder = order +
assumes linorder_linear: "z <y vy < z”

can be instantiated

instance nat :: ”{order, linorder}” by ...

NICTA
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Schematic Variables

[]

NICTA

X Y
XAY
X and Y must be instantiated to apply the rule

But: lemma “z+0=0+2"

x 1S free
convention: lemma must be true for all «
during the proof , x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.
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Higher Order Unification
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Unification:
Find substitution o on variables for terms s, t such that o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that o(s) =43, o(t)

Examples:
TXATYY =a8p TAX X +— x,7Y + x|
P x =afn TAX 7P + Ax. x N\ 1]
P(?fx) =apy Y 7f < x. x,?7Y < P]

Higher Order: schematic variables can be functions.
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Higher Order Unification
NICTA

[1 Unification modulo a8 (Higher Order Unification) is semi-decidable
(1 Unification modulo a8n is undecidable
[J Higher Order Unification has possibly infinitely many solutions

But:

[1 Most cases are well-behaved
[J Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

0 is aterm in 8 normal form where
[1 each occurrence of a schematic variable is of the form ?f ¢, ... t,
[1 andthet; ... t, are n-convertible into n distinct bound variables
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We have learned so far...

O O 0O o

Simply typed lambda calculus: \™

Typing rules for A7, type variables, type contexts
B-reduction in A7 satisfies subject reduction
B-reduction in A~ always terminates

Types and terms in Isabelle

NICTA
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