

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Slide 1

Exercises from last time

- → Download and install Isabelle from http://mirror.cse.unsw.edu.au/pub/isabelle/
- → Step through the demo files from the lecture web page
- → Write your own theory file, look at some theorems in the library, try 'find_theorems'
- → How many theorems can help you if you need to prove something like "Suc(Suc x))"?
- → What is the name of the theorem for associativity of addition of natural numbers in the library?

Slide 2

Content

→ Intro & motivation, getting started

[1]

→ Foundations & Principles

Lambda Calculus, natural deduction [1,2]
 Higher Order Logic [3°]

Higner Order Logic [3"]
 Term rewriting [4]

→ Proof & Specification Techniques

Isar [5]
 Inductively defined sets, rule induction [6^b]

Datatypes, recursion, induction [7°, 8]
 Calculational reasoning, code generation [9]

• Hoare logic, proofs about programs [10^d,11,12]

Slide 3

λ -calculus

Alonzo Church

- → lived 1903-1995
- → supervised people like Alan Turing, Stephen Kleene
- → famous for Church-Turing thesis, lambda calculus, first undecidability results
- \rightarrow invented λ calculus in 1930's

λ -calculus

- → originally meant as foundation of mathematics
- → important applications in theoretical computer science
- → foundation of computability and functional programming

Slide 4

popright NICTA 2012, provided under Creative Commons Attribution License 2

Copyright NICTA 2012, provided under Creative Commons Attribution License 2

^a a1 due; ^b a2 due; ^c session break; ^d a3 due

untyped λ -calculus

- → turing complete model of computation
- → a simple way of writing down functions

Basic intuition:

instead of
$$f(x) = x + 5$$

write $f = \lambda x. x + 5$

 $\lambda x. x + 5$

- → a term
- → a nameless function
- → that adds 5 to its parameter

Slide 5

Function Application

3

For applying arguments to functions

$$\begin{array}{ll} \text{instead of} & f(a) \\ \text{write} & f \ a \end{array}$$

Example:
$$(\lambda x. \ x+5) \ a$$

Evaluating: in $(\lambda x.\ t)\ a$ replace x by a in t

(computation!)

Example: $(\lambda x. \ x+5) \ (a+b)$ evaluates to (a+b)+5

Slide 6

THAT'S IT!

Slide 7

NICTA

Now Formal

Syntax

Terms: $t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$

 $v, x \in V, \quad c \in C, \quad V, C \text{ sets of names}$

- $\rightarrow v, x$ variables
- $\rightarrow c$ constants
- \rightarrow $(t \ t)$ application
- \rightarrow $(\lambda x. t)$ abstraction

Slide 9

Conventions

5

- → leave out parentheses where possible
- \rightarrow list variables instead of multiple λ

Example: instead of $(\lambda y. (\lambda x. (x y)))$ write $\lambda y x. x y$

Rules:

- \rightarrow list variables: $\lambda x. (\lambda y. t) = \lambda x y. t$
- \rightarrow application binds to the left: $x \ y \ z = (x \ y) \ z \neq x \ (y \ z)$
- ightharpoonup abstraction binds to the right: $\lambda x.\ x\ y\ =\ \lambda x.\ (x\ y)\ \neq\ (\lambda x.\ x)\ y$
- → leave out outermost parentheses

Slide 10

Getting used to the Syntax

Example:

```
\begin{split} \lambda x & y \ z. \ x \ z \ (y \ z) = \\ \lambda x & y \ z. \ (x \ z) \ (y \ z) = \\ \lambda x & y \ z. \ ((x \ z) \ (y \ z)) = \\ \lambda x. \ \lambda y. \ \lambda z. \ ((x \ z) \ (y \ z)) = \\ (\lambda x. \ (\lambda y. \ (\lambda z. \ ((x \ z) \ (y \ z))))) \end{split}
```

Slide 11

Computation

Intuition: replace parameter by argument this is called β -reduction

Example

```
(\lambda x \ y. \ f \ (y \ x)) \ 5 \ (\lambda x. \ x) \longrightarrow_{\beta}(\lambda y. \ f \ (y \ 5)) \ (\lambda x. \ x) \longrightarrow_{\beta}f \ ((\lambda x. \ x) \ 5) \longrightarrow_{\beta}f \ 5
```

Defining Computation

eta reduction:

Still to do: define $s[x \leftarrow t]$

Slide 13

Defining Substitution

Easy concept. Small problem: variable capture.

Example:
$$(\lambda x. \ x \ z)[z \leftarrow x]$$

We do **not** want: $(\lambda x. x x)$ as result.

What do we want?

In $(\lambda y.\ y.z)$ $[z \leftarrow x] = (\lambda y.\ y.x)$ there would be no problem.

So, solution is: rename bound variables.

Slide 14

Free Variables

Bound variables: in $(\lambda x. t)$, x is a bound variable.

Free variables FV of a term:

$$\begin{split} FV\left(x\right) &= \left\{x\right\} \\ FV\left(c\right) &= \left\{\right\} \\ FV\left(s\left.t\right) &= FV(s) \cup FV(t) \\ FV\left(\lambda x.\left.t\right) &= FV(t) \setminus \left\{x\right\} \end{split}$$

Example:
$$FV(\lambda x. (\lambda y. (\lambda x. x) y) y x) = \{y\}$$

Term t is called **closed** if $FV(t) = \{\}$

Our problematic substitution example, $(\lambda x. x. z)[z \leftarrow x]$, is problematic because the bound variable x is a free variable of the replacement term "x".

Slide 15

Substitution

NICTA

$$\begin{split} x & [x \leftarrow t] &= t \\ y & [x \leftarrow t] &= y & \text{if } x \neq y \\ c & [x \leftarrow t] &= c \\ \\ (s_1 \ s_2) & [x \leftarrow t] = (s_1[x \leftarrow t] \ s_2[x \leftarrow t]) \\ \\ (\lambda x. \ s) & [x \leftarrow t] = (\lambda x. \ s) \\ (\lambda y. \ s) & [x \leftarrow t] = (\lambda y. \ s[x \leftarrow t]) & \text{if } x \neq y \text{ and } y \notin FV(t) \end{split}$$

 $(\lambda y.\ s)\ [x \leftarrow t] = (\lambda z.\ s[y \leftarrow z][x \leftarrow t]) \quad \text{if } x \neq y$

Slide 16

and $z \notin FV(t) \cup FV(s)$

7

Substitution Example

$$\begin{array}{ll} & (x \ (\lambda x. \ x) \ (\lambda y. \ z \ x))[x \leftarrow y] \\ \\ = & (x[x \leftarrow y]) \ ((\lambda x. \ x)[x \leftarrow y]) \ ((\lambda y. \ z \ x)[x \leftarrow y]) \\ \\ = & y \ (\lambda x. \ x) \ (\lambda y'. \ z \ y) \end{array}$$

Slide 17

α Conversion

Bound names are irrelevant:

 $\lambda x. \ x$ and $\lambda y. \ y$ denote the same function.

α conversion:

 $s =_{\alpha} t$ means s = t up to renaming of bound variables.

$$s =_{\alpha} t \quad \text{iff} \quad s \longrightarrow_{\alpha}^{*} t$$
 ($\longrightarrow_{\alpha}^{*} = \text{transitive, reflexive closure of } \longrightarrow_{\alpha} = \text{multiple steps}$)

Slide 18

α Conversion

Equality in Isabelle is equality modulo α conversion:

if $s =_{\alpha} t$ then s and t are syntactically equal.

Slide 19

Examples:

$$x (\lambda x y. x y)$$

$$=_{\alpha} x (\lambda y x. y x)$$

$$=_{\alpha} x (\lambda z y. z y)$$

$$\neq_{\alpha}$$
 $z (\lambda z y. z y)$
 \neq_{α} $x (\lambda x x. x x)$

Back to β

We have defined β reduction: \longrightarrow_{β}

Some notation and concepts:

- $\rightarrow \beta$ conversion: $s =_{\beta} t$ iff $\exists n. \ s \longrightarrow_{\beta}^* n \land t \longrightarrow_{\beta}^* n$
- \rightarrow t is **reducible** if there is an s such that $t \longrightarrow_{\beta} s$
- \rightarrow $(\lambda x.\ s)\ t$ is called a **redex** (reducible expression)
- → t is reducible iff it contains a redex
- \rightarrow if it is not reducible, t is in **normal form**

Does every λ term have a normal form?

No!

Example:

$$(\lambda x. x x) (\lambda x. x x) \longrightarrow_{\beta} (\lambda x. x x) (\lambda x. x x) \longrightarrow_{\beta} (\lambda x. x x) (\lambda x. x x) \longrightarrow_{\beta} \dots$$

(but: $(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ (\lambda x. \ x \ x)) \longrightarrow_{\beta} \lambda y. \ y)$

λ calculus is not terminating

Slide 21

β reduction is confluent

Confluence: $s \longrightarrow_{\beta}^* x \land s \longrightarrow_{\beta}^* y \Longrightarrow \exists t. \ x \longrightarrow_{\beta}^* t \land y \longrightarrow_{\beta}^* t$

Order of reduction does not matter for result Normal forms in λ calculus are unique

Slide 22

β reduction is confluent

Example:

$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ a) \longrightarrow_{\beta} (\lambda x \ y. \ y) \ (a \ a) \longrightarrow_{\beta} \lambda y. \ y$$
$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ a) \longrightarrow_{\beta} \lambda y. \ y$$

Slide 23

η Conversion

Another case of trivially equal functions: $t = (\lambda x. \ t \ x)$

Example:
$$(\lambda x. \ f \ x) \ (\lambda y. \ g \ y) \longrightarrow_{\eta} (\lambda x. \ f \ x) \ g \longrightarrow_{\eta} f \ g$$

- $\rightarrow \eta$ reduction is confluent and terminating.
- $\rightarrow \xrightarrow{r}_{\beta\eta}$ is confluent.
 - $\longrightarrow_{\beta\eta}$ means \longrightarrow_{β} and \longrightarrow_{η} steps are both allowed.
- ightarrow Equality in Isabelle is also modulo η conversion.

In fact .

Equality in Isabelle is modulo α , β , and η conversion.

We will see later why that is possible.

Slide 25

O • NICTA

So, what can you do with λ calculus?

 λ calculus is very expressive, you can encode:

- → logic, set theory
- → turing machines, functional programs, etc.

Examples:

$$\begin{array}{ll} \text{true } \equiv \lambda x \, y. \, x & \text{if true } x \, y \longrightarrow_{\beta}^* x \\ \text{false} \equiv \lambda x \, y. \, y & \text{if false } x \, y \longrightarrow_{\beta}^* y \\ \text{if } \equiv \lambda z \, x \, y. \, z \, x \, y \end{array}$$

Now, not, and, or, etc is easy:

 $\begin{array}{l} \operatorname{not} \equiv \lambda x. \ \operatorname{if} x \ \operatorname{false} \ \operatorname{true} \\ \operatorname{and} \equiv \lambda x \ y. \ \operatorname{if} x \ y \ \operatorname{false} \\ \operatorname{or} \quad \equiv \lambda x \ y. \ \operatorname{if} x \ \operatorname{true} y \end{array}$

Slide 26

More Examples

Encoding natural numbers (Church Numerals)

```
0 \equiv \lambda f x. x
1 \equiv \lambda f x. f x
2 \equiv \lambda f x. f (f x)
3 \equiv \lambda f x. f (f (f x))
...
```

Numeral n takes arguments f and x, applies f n-times to x.

```
\begin{split} & \texttt{iszero} \equiv \lambda n. \ n \ (\lambda x. \ \texttt{false}) \ \texttt{true} \\ & \texttt{succ} \quad \equiv \lambda n \ f \ x. \ f \ (n \ f \ x) \\ & \texttt{add} \quad \equiv \lambda m \ n. \ \lambda f \ x. \ m \ f \ (n \ f \ x) \end{split}
```

Slide 27

Fix Points


```
 (\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t \longrightarrow_{\beta} 
 (\lambda f. f ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) f)) t \longrightarrow_{\beta} 
 t ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t)
```

$$\begin{split} \mu &= (\lambda x f.\ f\ (x\ x\ f))\ (\lambda x f.\ f\ (x\ x\ f)) \\ \mu\ t \longrightarrow_{\beta} t\ (\mu\ t) \longrightarrow_{\beta} t\ (t\ (\mu\ t)) \longrightarrow_{\beta} t\ (t\ (t\ (\mu\ t))) \longrightarrow_{\beta} \dots \end{split}$$

 $(\lambda x f. \ f \ (x \ x \ f)) \ (\lambda x f. \ f \ (x \ x \ f))$ is Turing's fix point operator

Nice, but ..

As a mathematical foundation, λ does not work. It is inconsistent.

- → Frege (Predicate Logic, ~ 1879): allows arbitrary quantification over predicates
- → Russell (1901): Paradox $R \equiv \{X | X \notin X\}$
- → Whitehead & Russell (Principia Mathematica, 1910-1913): Fix the problem
- → Church (1930): λ calculus as logic, true, false, \wedge , ... as λ terms

with $\{x \mid P \mid x\} \equiv \lambda x. P \mid x \qquad x \in M \equiv M \mid x$

Problem: you can write $R \equiv \lambda x$. not $(x \ x)$

and get $(R R) =_{\beta} \text{not} (R R)$

Slide 29

ISABELLE DEMO

Slide 30

We have learned so far...

- → \(\lambda\) calculus syntax
- → free variables, substitution
- $\rightarrow \beta$ reduction
- $\rightarrow \alpha$ and η conversion
- $\rightarrow \beta$ reduction is confluent
- $\rightarrow \lambda$ calculus is very expressive (turing complete)
- \rightarrow λ calculus is inconsistent

Slide 31

15 16