NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Exercises from last time

NICTA

Download and install Isabelle from
http://mrror.cse.unsw. edu. au/ pub/i sabel | e/

Step through the demo files from the lecture web page
Write your own theory file, look at some theorems in the library, try 'find_theorems’

How many theorems can help you if you need to prove something like “Suc(Suc x))"?

What is the name of the theorem for associativity of addition of natural numbers in the
library?

Content
NICTA
[Intro & motivation, getting started [1]
[1 Foundations & Principles
e Lambda Calculus, natural deduction [1,2]
e Higher Order Logic [39]
e Term rewriting [4]
[1 Proof & Specification Techniques
o |sar [5]
e Inductively defined sets, rule induction [6°]
e Datatypes, recursion, induction [7¢, 8]
e Calculational reasoning, code generation [9]
e Hoare logic, proofs about programs [104,11,12]

2al due; *a2 due: “session break: ¢a3 due

M-calculus

Alonzo Church

0 lived 1903-1995
[1 supervised people like Alan Turing, Stephen Kleene
[1 famous for Church-Turing thesis, lambda calculus,

first undecidability results
[0 invented X calculus in 1930’s

A-calculus
[originally meant as foundation of mathematics
[J important applications in theoretical computer science
[1 foundation of computability and functional programming

untyped \-calculus

[1 turing complete model of computation
[1 a simple way of writing down functions

Basic intuition:

Instead of
write
ANC. X+ D
[] aterm
[1 a nameless function

[] that adds 5 to its parameter

fa) =a 45
f=Xx.x+5

NICTA

Function Application

NICTA
For applying arguments to functions

instead of f(a)

write fa

Example: (Az.x+5)a

Evaluating: in (Azx. t) areplace x by a int

(computation!)

Example: (Ax. z+5) (a+0b) evaluatesto (a+b)+5

NICTA

THAT'S IT!

NICTA

NOow FORMAL

Syntax

NICTA
Terms: t = v ’ C ‘ (t t) ’ ()\x. t)

v,reV, ceC, V, (C setsof names

vV, T variables

C constants

(t t) application
(Az. t) abstraction

N I I B

Conventions

[]
[]

leave out parentheses where possible
list variables instead of multiple A

Example: instead of (A\y. (Az. (x y))) write Ayz.xy

Rules:

[

[]
[]
[]

list variables: A\xz. (A\y.t) = Az y.t

application bindstotheleft: z y 2z = (x y) 2 # = (y 2)
abstraction binds to the right: Axz. x y = Az. (z y) # (Ax. 2) vy
leave out outermost parentheses

NICTA

10

Getting used to the Syntax

Example:
Neyzoxz(yz)=
ey zo(x2) (yz) =
Ary 2z ((z2) (y 2) =
Ar. Ay Az, ((z 2) (y 2)) =

(Az. (Ay. (Az. ((z 2) (y 2)))))

NICTA

11

Computation

Intuition: replace parameter by argument

this is called 5-reduction

Example

A y. f(yx)) 5 (Ax.x) —p
(Ay- f(y5)) (Az.x) —p
f((Az.z) 5) —

f5

NICTA

12

Defining Computation

NICTA
5 reduction:
(Ax.s)t —p sl <+t
s —3 5§ = (st) —p (')
t —p t = (st) —p5 (st
s —p & = (Az.s) —p (Az.)

Still to do: define s[x <«]

13

Defining Substitution

Easy concept. Small problem: variable capture.

Example: (\z. x 2)[z < 7]

We do not want: (Ax. = x) as result.

What do we want?

In (\y. y z) [z < z] = (Ay. y x) there would be no problem.

So, solution is: rename bound variables.

NICTA

14

Free Variables

NICTA
Bound variables: in (Az. t), x is a bound variable.

Free variables F'V of aterm:
FV (z) ={z}

Vi ={}

Vi(st) =FV(s)UFV(t)

(

FV (Ax.t) =FV(t) \ {x}

Example: FV(Xx. Ay. Az.z)y)yz)= {y}

Term t is called closed if FV (t) = {}

Our problematic substitution example, (Ax. x z)[z < z], is problematic because
the bound variable z is a free variable of the replacement term “x”.

15

Substitution
NICTA
T [x 1] =1
y |z 1 =y ifz #y
clr + 1] =c

(s1 82) [z < t] = (s1[x <+ t] so|x <+ t])

(Az. s) [x < t] = (A\x. s)
(Ay. s) [x + t] = (\y. s|x < t]) ifx £yandy ¢ FV(t)

Ay. s) [z t] =Nz.sly«+z]lx < t]) ifx#y
and z ¢ FV(t) U FV(s)

16

Substitution Example

(x (Ax.z) (M\y. z2))|r + vy

= (zlz < y]) ((Az. 2)lz < y]) ((Ay. z 2)[z < y])
= y(Az.z) (N zy)

NICTA

17

« conversion

NICTA
Bound names are irrelevant:

Az. x and \y. y denote the same function.

(¢ conversion:
s =, t means s = t up to renaming of bound variables.

(Az.t) —o (Ay. tlx+y]) ify & FV(t)
o S t a "t
Formally: S (st) — (s 1)
t —y T = (st) —a (st
s —a § = (Ar.s) —o (Ax.9)

s=qt Iff s—%1
(—7, = transitive, reflexive closure of —, = multiple steps)

18

« conversion

Equality in Isabelle is equality modulo « conversion:

If s =, t then s and ¢t are syntactically equal.

Examples:

NICTA

19

Back to

We have defined 3 reduction: —3

Some notation and concepts:

[]

[]
[]
[]
[]

B conversion: s =gt iff In.s —FnAL—5n
t is reducible if there is an s such thatt — 3 s
(Ax. s) t is called a redex (reducible expression)

t is reducible iff it contains a redex

if it is not reducible, ¢ is in normal form

NICTA

20

Does every A\ term have a normal form?

NICTA
No!

Example:

(A\x. x x) (A\r. v) —>p8
(Ar.zz) (M. x &) —p

(Ar.zz) (Ar.xx) —p...

(but: (Axy.y) (Ar.zx) (Az. 2 7)) —35 AY. y)

A calculus is not terminating

21

5 reduction is confluent

Confluence:

S —paxNs —gy=dt.o —35tANy —3t

S
/ \
N Y

Order of reduction does not matter for result
Normal forms in \ calculus are unique

NICTA

22

5 reduction is confluent

Example:

(Azy.y) (Az.x x) a)—p (Ar y.y) (aa)—p Ay. y
AN y.y) (A\e.zx) a)—p Ay. y

NICTA

23

7 Conversion

NICTA
Another case of trivially equal functions: t=(Azx.tx)
M. tz) —p if x ¢ FV(t)
Definition: & ~n 5 = (st) —y (s'1)
—, ! = (st) —y (st)
s —y § = (Ax.s) —p (Az.s)

s=pt Iff Eln.sﬁ;';n/\tﬁ;;n

Example: (\z. fz) (A\y.gy) —, Az. fx)g— fg

[J n reduction is confluent and terminating.
[— 3, IS confluent.

— 3, Means — g and —,, steps are both allowed.
[1 Equality in Isabelle is also modulo 7 conversion.

24

In fact ...

Equality in Isabelle is modulo «, 8, and n conversion.

We will see later why that is possible.

NICTA

25

So, what can you do with \ calculus?

A calculus is very expressive, you can encode:

[1 logic, set theory
[turing machines, functional programs, etc.

Examples:
true =Xry. z Iftruezy —jua
false=X\ry. y If falsexzy —5vy
| f =\zxy. 22y

Now, not , and, or, etc is easy:

not =X z.if xfalsetrue
and =Xz y.1f zyfal se
or =Xry.if xtruey

NICTA

26

More Examples

NICTA
Encoding natural numbers (Church Numerals)
0 =Afax.x
1 =\Mfzx. fx

2 =Afzx. f(fx)
3 =Afa f(f(f2))

Numeral n takes arguments f and x, applies f n-times to x.

| szero = An.n (Ax.fal se)true
succ =Mfz. f(nfx
add = xmn Afzx.mfnfz)

27

Fix Points

Oz f. flexf) Oaffwef) t—p
Af f (O fof@a f)) Qe fof(zaf)) t—
t (O f. faf) A f f(zzf))t)

p=(af. f (@a f) Qaf. f (o f))
it —pt (ut) —pt(t(ut) —gt (t(t (1) —p ...

Azf. f(xx f)) A\zf. f (xx f))is Turing's fix point operator

NICTA

28

Nice, but ...

NICTA
As a mathematical foundation, \ does not work. It is inconsistent.

[1 Frege (Predicate Logic, ~ 1879):
allows arbitrary quantification over predicates
[0 Russell (1901): Paradox R = {X|X ¢ X}

[0 Whitehead & Russell (Principia Mathematica, 1910-1913):
Fix the problem

[1 Church (1930): X calculus as logic, true, f al se, A, ... as A terms

with {z| Px}=Xx. Px reM=Mzx
Problem: you can write R = Az. not (z x)
and get (R R) =g not (R R)

29

ISABELLE DEMO

NICTA

30

We have learned so far...

O 0O 0O d oo

A calculus syntax

free variables, substitution

£ reduction

« and n conversion

S reduction is confluent

A calculus is very expressive (turing complete)
A calculus is inconsistent

NICTA

31

