NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

C

Last Time

O o 0O o

Verifying C by translating into Simpl

Expressions

C control flow

Exceptions with Hoare logic rules

C functions and procedures with Hoare logic rules

NICTA

Content

[Intro & motivation, getting started

[J Foundations & Principles

e Lambda Calculus, natural deduction
e Higher Order Logic
e Term rewriting

[1 Proof & Specification Techniques

o [sar

¢ Inductively defined sets, rule induction

e Datatypes, recursion, induction

e Calculational reasoning, mathematics style proofs
e Hoare logic, proofs about programs

2al out: ’al due; a2 out; “a2 due: ¢session break: ¥ a3 out: a3 due

()@

NICTA

Rough timeline

[1]

[2,3,4%]
5,6°,7]
[8,9,10°]

[11,129]
[13¢,15]
[16,177,18,19]
[20]
[219,22,23]

NICTA

Main new problems in verifying C programs:

expressions with side effects

more control flow (do/while, for, break, continue, return)
local variables and blocks

functions & procedures

prevent undefined execution

concrete C data types

OO o 0o

C memory model and C pointers

Undefined Execution

NICTA

In C, we're not allowed to:

[1 divide by zero

shift more than <architecture defined> bits
dereference a Null pointer

access outside array bounds

access unallocated memory

free unallocated memory

O O O

Their absence should become proof obligations.

Simpl Guards

NICTA
Syntax:

Guard 'f "'s bexp" "('s,’p,’'f) com

Semantics:

| s€g; I' F(c,Normal s) = t|] =T (Guard f g ¢,Normal s) = ¢

s¢ g=—=TIF (Guard f g ¢, Normal s) = Faultf

Hoare rules:

['Fp{g AP} c{Q} feF Thtr{gAP}c{Q}
I'p {g A P} Guard f g c {Q} I'p {P} Guard f g c {Q}

Simpl Guards: Why two Hoare rules?

NICTA

Why two Hoare rules?
So we can separate out verification of guards.

F' controls which guards are currently assumed and which are proved.

Example:

Do automated verification of array guards separately
= get to assume array guards "for free” in the rest.

Simpl Guards: Why two Hoare rules?

NICTA

Use Guards for:
Every time an expression or statement does something potentially undefined,
add a guard in the translation.

Example:

X =a/l b = GuardDivByZero (b #0) (x:==a/b)

NICTA

DEMO: GUARDS

C data types

NICTA

Next problem: C data types

C has the following types:

OO OO0 d

basic: int (long/short, signed/unsigned), char, void, float, double, long double
enum types

pointers: type*

array types: type[n], type[n][m], type[]

struct types: like records, but can use recursion for pointers

unions: multiple interpretations of same memory content

function pointers

Size of basic types is architecture dependent.
Encoding in memory partially compiler dependent.

10

Basic types

NICTA

float/double = IEEE floating point numbers, no Isabelle formalisation yet.
(Any takers?)

void =- unit type in Isabelle
integer types = finite machine words (x mod 232 etc)

Why bother with finite words? Why not nat/real?

Want to model overflow precisely.

Depending on application, could work with nat and guards instead.

11

Binary Search (j ava. util . Arrays)

N ARONR

11:
12:
13:
14:
15:
16:
17:

public static int binarySearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;

while (1ow <= high) {
int mid=(low+ high) / 2;
int midval = a[md];

if (mdval < key)
low=md + 1

else if (mdval > key)
high = md - 1;

el se
return md; // key found

}

return -(low + 1); [// key not found.

int md=(low+ high) / 2

htt p://googl eresear ch. bl ogspot. com 2006/ 06/
extra-extra-read-all-about-it-nearly. htnl

12

NICTA

Machine Words

NICTA

Goal: want to write things like

X&&Yy=0=x+y=x]||y
X<<nUm=x!(n+m)
X<<2=4%*X ucast (y + OxFF21) = (x - 0b01001011)

unat X + unaty < 2” word_size = unat (x +y) = unat x + unat y

X :: 32 word y .. 8 word Z .. nword

&& hitwise and,
"ucast” cast between word sizes, "unat” convert words to nat

bitwise or, !! test bit at position n, << shift left,

13

Formalisation Idea

NICTA

Goal:
Create an Isabelle type that captures machine words of length n

Problem:

The parameter n Is not a type, but a value.
This is called a dependent type .

Isabelle does not support dependent types.

Solutions: make a type 'a word, encode length in type 'a

[1 either implicitly as number of elements in ’a,
[1 or explicitly via type class function

14

Formalisation In Isabelle

NICTA

Type class used in HOL/Word/Word.thy:

[1 ’'a must be class len
[1 class len has function len_of :: ’a itself = nat
[] to implement class len, a type must provide that function

'a itself:

[1 'aitself is a type with one element of type 'a
[1 the one element is written TYPE('a)

Numeric types in Library/Numeral_Type.thy:

[1 create types written as numbers (type 1, 16, etc)
[have 1, 16, etc elements
[1 the numbers are syntax for type constructors encoding 0, 1, 2*n, 2*n+1

15

Representation (no taxation)

NICTA

Now can encode length. How do we represent words?

Options:
nat mod 2" n
int mod 2° n

[]
[]
[1 bool lists of length n
[]

test-bit functions nat = bool

All of these are equivalent. Actual definition in Isabelle is int mod 2™ n.

All others are provided as well as simulated type defs.

16

Operators

NICTA

Rest is standard (see HOL/Word/Word.thy + HOL/Word/Examples/):

[1 define standard arithmetic and bit-wise operators with syntax
[1 prove lemmas connecting to known type representations

[1 determine abstract structure:
commutative ring with 1, partial order, boolean algebra for bitwise ops, etc

prove library with characteristic properties
provide some automation: smt connection, auto cast to nat

(N I N [y I

profit

17

NICTA

DEMO: WORD

18

C Data types

Can now represent all C types apart from float.
(Making explicit architecture assumptions on size etc.)

[

O O 0O o

integer types (incl enum): word

pointers: datatype 'a ptr = 32 word

arrays: pointers or array types in Isabelle
structs: records or data types

unions: separate struct types with conversions
function pointers: word

Missing: modelling C memory

19

NICTA

C Memory Model

Heap models so far:
[J addr =- obj option
[1 separate heaps by type
[1 separate heaps by record field

C is more ugly:

pointer arithmetic and casting breaks type safety

objects could overlap

objects can be access under different types (union)

systems programmers might rely on data layout (device access)

O O 0O O

could have pointers into stack (reference to local var)

Our model solves all but the last one.

(Can also solve that one, but it gets even more ugly.)

20

NICTA

C Memory Model

NICTA

The Memory Model:
Heap = function "32 word = 8 word”

That it’s.
Ok, not quite: It's the basis. We build a whole machinery on to P.

Basic idea:
[1 32 word =- 8 word is the information that C runtime has
[1 we store additional type information for proofs (ghost state)
[] use that type information to automatically get abstract Isabelle objects from heap
[1 if we stay in type-safe fragment of C, can reason like in separate heaps.

21

C Memory Model Diagram (1)

NICTA

[J basic function 32 word = 8 word”
[1 additional type information for regions of memory

e v

byte int

22

C Memory Model Diagram (2)

7F|10|32/A0

size-of TYPE (int)

™ [rombres)
from-bytes
’ 10
32| < to-bytes
AOQ

32A07F10

*q. | 32A07F10

23

NICTA

Encoding Type Information

Another type class:

[]
[]
[]
[]
[]

for Isabelle types 'a that represent C types
from-bytes :: 8 word list = 'a option
to-bytes :: 'a = 8 word list

size-of :: 'a itself = nat

tag :: 'a itself = typ-tag

Laws:

[from-bytes (to-bytes v) = Some v
[1 length (to-bytes (v::’a)) = size-of TYPE('a)

size-of TYPE (int)

l

7F

10

32

to-bytes

=Tn

AO

Example picture unsigned int = 32 word (depending on architecture):

NICTA

32A07F10

[1 from-bytes/to-bytes = big/little endian encoding (depending on architecture)

[1 size-of =4
[] tag ="32 word”

24

Encoding Type Information

NICTA

7F|10|32/A0

size-of TYPE (int)

l

7F

10

32

AO

from-bytes)
{ to-bytes

32A07F10

25

*q. | 32A07F10

Can now define
heap access/update
generically for 'a!

C Memory Model Diagram (3)

Goal:

heap

byte

int

short

26

NICTA

Separate Heaps

NICTA

Plan:
[1 combine type info and real heap into one object typed-hp
[1 write 'view’ function lift :: typed-hp = ("a ptr = ’a option)
[J models type-safe heap access
[returns None if request type 'a does not match type in memory

27

C Memory Model Diagram (4)

NICTA

heap 0 OAIFF 7F|10[32/A0 FF|FF

typ-desc .

L lift-state

heap-state 0 [0ATFF 7F[10| 32|A0 FF|FF

lift-typ-heap
v

byte

int

short .

28

Separate Heaps Properties

NICTA

Lemmas about lift and heap-update:
If lift hp (p :: 'a ptr) = None, then

(1 lift-, (heap-update p v hp) = (lift:, hp) (p — V)
[1 TYPE(a) L TYPE(b) = lift/, (heap-update p v hp) = lift /,

where TYPE('a) L. TYPE(’b) = the two types are disjoint.

This means 'lift’ works like a separate heap for each type!

29

NICTA

DEMO: POINTERS

30

NICTA

DEMO: C PROGRAM TRANSLATION

31

We have seen today ...

[] preventing undefined execution
(] finite machine words

[1 concrete C data types

[C memory model and pointers

32

NICTA

