NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

C

Last Time

O o 0O o

Weakest preconditions
Verification conditions
Example program proofs
Arrays, pointers

Hard part: finding invariants

NICTA

Content

[Intro & motivation, getting started

[J Foundations & Principles

e Lambda Calculus, natural deduction
e Higher Order Logic
e Term rewriting

[1 Proof & Specification Techniques

o [sar

¢ Inductively defined sets, rule induction

e Datatypes, recursion, induction

e Calculational reasoning, mathematics style proofs
e Hoare logic, proofs about programs

2al out: ’al due; a2 out; “a2 due: ¢session break: ¥ a3 out: a3 due

()@

NICTA

Rough timeline

[1]

[2,3,4%]
5,6°,7]
[8,9,10°]

[11,129]
[13¢,15]
[16,177,18,19]
[20]
[219,22,23]

Program Verification

NICTA

So far:

[1 have verified functional programs written in HOL
[1 generated ML/Haskell/OCaml code for them
[1 learned about verifying imperative programs with Hoare Logic

Next few lectures:

[real C programs
[real Haskell programs

Main new problems in verifying C programs:

O O O

expressions with side effects

more control flow (do/while, for, break, continue, return)
local variables and blocks

functions & procedures

concrete C data types

C memory model and C pointers

C is not a nice language for reasoning.

Things are going to get ugly.

NICTA

Approach

Approach for verifying C programs:
Translate into existing, clean imperative language in Isabelle.

Simpl:

[

N Y N O B

generic imperative language by Norbert Schirmer, TU Munich
state space and basic expressions/statements can be instantiated
has operational semantics

Hoare logic with soundness and completeness proof

automated vcg

available from the Archive of Formal Proofs htt p: // af p. sf . net

NICTA

Commands in Simpl

type _synonym’'s bexp = "'s set"

datatype (’'s, 'p, 'f) com=
Ski p
Basic "'s => 's"
Spec "('s * 's) set”
Seq "('s ,’'p, 'f) com "('s,’ p,’'f) cont

Cond "’'s bexp" "(’'s,’p,'f) com "(’'s,’ p,’'f) cont

|

|

|

|

| While "' s bexp" "('s,’p, f) cont

| Call ' p

| DynCom"'s => ('s,’p,’'f) cont

| Guard 'f "'s bexp" "(’'s,’ p, ' f) con

| Throw

| Catch "('s,’p,’f) comt "(’s,’ p,’f) com

' s = state, ' p = procedure names, ' f = faults

NICTA

NICTA

DEMO: SIMPL

Plan

NICTA

Almost all of C can be translated into Simpl.

This is the plan for today.

Expressions with side effects

()@

NICTA
a=a=*Dh x=f(h)y; i =++H - i++ x =f(h) + g(x);
[0 a = a * b — Fine: easy to translate into Isabelle
[0 x = f(h) — Fine: may have side effects, but can be translated sanely.
0 i = ++i - | ++ — Seriously? What does that even mean?
Make this an error, force programmer to write instead:
10 =1; i++ 1 =1 - 10; (orjusti = 1)

[0 x = f(h) + g(x) — Okifgandh do not have any side effects
—> Prove all functions in expressions are side-effect free

Alternative: explicitly model nondeterministic order of execution in expressions.

10

Control flow
NICTA
do { c } while (condition);
Already can treat normal while-loops! Automatically trans late into:
c; while (condition) { c }
Similarly:

for (init; condition; increment) { c }
becomes

init; while (condition) { c; increnent; }

11

More control flow: break/continue

while (condition) {
f oo;
1f (Q continue;
bar ;
1 f (P) break;

}

Non-local control flow: cont | nue goes to condition, br eak goes to end.

Can be modelled with exceptions:

[J throw exception cont i nue, catch at end of body.
[] throw exception br eak, catch after loop.

12

NICTA

Exceptions

NICTA

Do not exist in C, but can be used to model C constructs.

Exceptions can be modelled with two kinds kinds of state:

[normal states as before
[1 abrupt states — an exception was raised, normal commands are skipped.

Simpl commands:
[1 throw : switch to abrupt state

0 try {cl }catch {c2 }:
if c1 terminates abruptly, execute c2, otherwise execute only c1.

Use state to store which exception was thrown.

13

Break/continue

NICTA
Break/continue example becomes:
try {
while (condition) {
try {
f 00;
If (Q { exception = 'continue’ ; throw }
bar ;
I f (P) { exception = 'break’; throw, }
} catch { if (exception == "continue’') SKIP else throw, }
}
} catch { if (exception == 'break’) SKIP else throw }

This i1s not C any more. But it models C behaviour!

Need to be careful that only the translation has access to exception state.

14

Return

NICTA

I f (P) return x;
f oo;
return y;

Similar non-local control flow. Similar solution: use throw/try/catch

try {
if (P) { return_val = x; exception = 'return’; throw, }
f 0o;
return_val = Xx; exception = 'return’; throw
} catch {
SKI P

15

Hoare Rules for Exceptions

NICTA

Need new kind of Hoare triples to model normal and abrupt state:

Py fiQ)AE}

If P holds initially, and

[1 f terminates in state Normal s, then Q@ s;
(1 f terminates in state Abrupt s, then E s

Hoare Rules:

{P} C1 {Q}a {R} {R} C2 {Q}v {E}
{Q} throw {P}v {Q} {P} try ¢1 catch ¢ {Q}v {E}

{P} C1 {R}a {E} {R} C2 {Q}a {E}
{P} C1; C2 {Q}v {E}

(the other rules analogous)

16

NICTA

DEMO: CONTROL FLOW

17

Procedures in Simpl

Simpl com datatype

[1 has Call command
[1 but no procedure declaration
[J and no local variables or parameters!

They can be simulated.

18

NICTA

Operational Semantics of Simpl

NICTA

(types s, p, f as before, Semantic.thy)

datatype xstate = Normal s | Abrupt s | Fault f | Stuck
type _synonym procs = p = com option

Inductive exec :: procs = com = xstate = xstate = bool

I' - (Skip, Normal s) = Normal s
I' - (Throw, Normal s) = Abrupt s

| T'p=Somec; I' - (¢, Normal s) = s’ || = I' - (Call p, Normal s) = &’
I' p = None = T" - (Call p, Normal s) = Stuck

19

Formal procedure parameters and local variables

Simpl only has one global state space.

Basic idea:

[]
[]
[]
[]

Im

separate all locals and all globals

keep both in one state space record

on procedure entry, set formal parameters to actual values
on procedure exit, restore previous values of all locals

plemented using DynCom:
call init body restore result =
DynCom (As. init; body; DynCom (At. restore s t; result t))

Example: for procedure f(x) ={r=x+2}

NICTA

y=CALLf(7) =call(x=7)(r=x+2)(Ast. s (]| globals:=globalst|)) (\t. y=rt)

20

Verifying Procedures

NICTA

Simple idea: replace/inline body. Does not work for recursion.

Instead:

[J introduce assumed specifications for procedures
outside call: no specification known, user provided
but: can assume current specification for recursive call
works like induction

(N I N [y I

IS proved by induction on the recursive call depth

21

NICTA

DEMO: PROCEDURES

22

We have seen today ...

NICTA

[1 C control flow
[J Exceptions with Hoare logic rules
[1 C functions and procedures with Hoare logic rules

23

