Automatic Proof and Disproof in Isabelle/HOL

Jasmin Blanchette, Lukas Bulwahn, Tobias Nipkow

> Fakultät für Informatik TU München

- 1 Introduction
- 2 Isabelle's Standard Proof Methods
- 3 Sledgehammer
- 4 Quickcheck: Counterexamples by Testing
- 5 Nitpick: Counterexamples by SAT Solving

- 1 Introduction
- 2 Isabelle's Standard Proof Methods
- Sledgehammer
- 4 Quickcheck: Counterexamples by Testing
- 5 Nitpick: Counterexamples by SAT Solving

A tale of two worlds

FOL HOL
$$f(s,t) | f s t, f s, \lambda x.t$$
Otter (1987) | Isabelle (1986)

They did not talk to each other because they spoke different languages.

This is the tale of how these two worlds began to understand and boost each other.

Isabelle

- is an interactive theorem prover
- that has always embraced automation
- but without sacrificing soundness:

All proofs must ultimately go through the Isabelle kernel

This is the LCF principle (Robin Milner).

Two decades of Isabelle development

```
1990s Basic proof automation
      Our own proof search in ML:
      simplifier, automatic provers, arithmetic
2000s Embrace external tools
      Let them do the proof search,
      but don't trust them:
      ATPs (FOL provers, "Sons of Otter")
      SMT solvers
      SAT solvers
      Programming languages
```

- Introduction
- 2 Isabelle's Standard Proof Methods
- Sledgehammer
- 4 Quickcheck: Counterexamples by Testing
- 5 Nitpick: Counterexamples by SAT Solving

Simplifier

- First and higher-order equations (λ)
- Conditional equations
- Contextual simplification
- Special solvers (eg orderings)
- Arithmetic
- Case splitting (triggered by if and case)
- Large library of default equations

Isabelle's workhorse

The power of Isabelle's internal automated proof methods

- relies on large sets of default rules
- that are user-extensible ([simp])
- and tuned over time.

Tableaux prover

Paulson

- Based on lean $T^A P$ (Beckert & Posegga)
- Generic
- User-extensible by intro and elim rules
- Proof search in ML, proof checking via Isabelle kernel
- Works well for pure logic and set theory
- Does not know anything about equality

Isabelle Demo

- 1 Introduction
- 2 Isabelle's Standard Proof Methods
- 3 Sledgehammer
- 4 Quickcheck: Counterexamples by Testing
- 5 Nitpick: Counterexamples by SAT Solving

Sledgehammer

Paulson et al.

- Connects Isabelle with ATPs and SMT solvers
 E, SPASS, Vampire, CVC3, Yices, Z3, ...
- One-click invocation:
 - Users don't need to select facts
 - ... or ensure the problem is first-order
- Exploits local parallelism, remote servers

Sledgehammer: Demo

Sledgehammer: Architecture

Sledgehammer: Fact selection

Meng & Paulson

Provers perform poorly given 1000s of facts

A lightweight, symbol-based filter greatly improves the success rate

Number of facts is optimized for each prover

Sledgehammer: Translation

Meng & Paulson Bl., Böhme & Smallbone

Source: higher-order, polymorphism + type classes

Target: first-order, untyped/simply-typed

- Firstorderize
 - SK combinators, λ -lifting
 - Explicit application operator
- 2 Encode types
 - Monomorphize
 - ... or encode polymorphism

Sledgehammer: Reconstruction

Paulson & Susanto Böhme & Weber

Four approaches (the 4 Rs):

- A. Re-find using Metis
- B. Rerun external prover
- C. Recheck stored proof
- D. Recast into Isar proof

A. Re-find using Metis

Usually fast and reliable

Metis sometimes too slow (5% loss on avg)

B. Rerun external prover

Reinvokes the SMT solver each time!

C. Recheck stored proof

Fast
No need for SMT solver for replay
Fragile

D. Recast into Isar proof

```
lemma length (tl xs) \leq length xs proof – have tl [] = [] by (metis tl.simps(1)) hence \exists u. \ xs @ \ u = xs \land \ tl \ u = [] by (metis append_Nil2) hence tl (drop (length xs) xs) = [] by (metis append_eq_conv_conj) hence drop (length xs) (tl xs) = [] by (metis drop_tl) thus length (tl xs) \leq length xs by (metis drop_eq_Nil) qed
```

Fast, self-explanatory Experimental, bulky

Sledgehammer: Judgment Day

Böhme & N. Bl., Böhme & Paulson

- 1240 goals arising in 7 older theories Arrow, FFT, FTA, Hoare, Jinja, NS, SN
- In 2010: E, SPASS, Vampire (5 to 120 s) $ESV \times 5s \approx V \times 120 s!$
- In 2011: Also E-SInE, CVC3, Yices, Z3 (30 s)
 Z3 > V!

Sledgehammer & Teaching

Paulson

```
Old way: Low-level tactics + lemma libraries
New way: Isar + Sledgehammer + simp etc.
     lemma blah
     sorry
     proof -
        have blah<sub>0</sub> sorryby (metis foo bar)
        hence blah<sub>1</sub> sorryby metis
        hence blah<sub>2</sub> sorryby auto
        thus blah sorryby (metis baz)
```

qed

Sledgehammer: Success story

Guttman, Struth & Weber

Developed large Isabelle/HOL repository of algebras for modeling imperative programs (Kleene Algebra, Hoare logic, ..., ≈ 1000 lemmas)

Intricate refinement and termination theorems

Surprise: Sledgehammer and Z3 automate algebraic proofs at textbook level!

"The integration of ATP, SMT, and Nitpick is for our purposes **very very helpful**." — G. Struth

Theorem proving and testing

Testing can show only the presence of errors, but not their absence. (Dijkstra)

Testing cannot prove theorems, but it can refute conjectures!

Two facts of life:

- 95% of all conjectured theorems are wrong.
- Theorem proving is an expensive debugging technique.

Theorem provers need counterexample finders!

- 1 Introduction
- 2 Isabelle's Standard Proof Methods
- Sledgehammer
- 4 Quickcheck: Counterexamples by Testing
- 5 Nitpick: Counterexamples by SAT Solving

- Adds lightweight validation by testing
- Motivated by Haskell's QuickCheck
- Employs Isabelle's code generator
- Quick response time
- No-click invocation:
 automatic after parsing a proposition

Quickcheck: Demo

- Covers different testing approaches
 - Random and exhaustive testing
 - Smart test data generators
 - Narrowing-based testing
- Creates test data generators automatically

Test generators for datatypes

Fast iteration over the large number of tests using continuation-passing-style programming:

```
For datatype \alpha list = Nil | Cons \alpha (\alpha list) we create a test function for property P: test<sub>\alphalist</sub> P = P Nil andalso test<sub>\alpha</sub> (\lambda x. test<sub>\alphalist</sub> (\lambda xs.P (Cons x xs)))
```

Test generators for predicates

Testing propositions with preconditions distinct $xs \Longrightarrow$ distinct (remove1 x xs)

Problem:

Exhaustive testing creates useless test data

Solution:

Use precondition's definition for smarter generator

Test generators for predicates

```
From the definition:
   distinct Nil = True
   distinct (Cons x \times s) = (x \notin xs \land distinct \times s)
we create a test function for property P:
test-distinct<sub>\alphalist</sub> P =
   P Nil andalso
   test_{\alpha} (\lambda x. test-distinct_{\alpha list} (\lambda xs.
      if x \notin xs then P (Cons x xs) else True))
```

Non-distinct lists are never generated

Test generators for predicates

Construct generators using data flow analysis:

- Transform predicates to system of horn clauses $x \notin xs \Longrightarrow \text{distinct } xs \Longrightarrow xs \Longrightarrow xs$
- Perform data flow analysis: which variables can be computed, which variables must be generated?
- Synthesize test data generator

Narrowing-based testing

- Symbolic execution with demand-driven refinement:
 - Test cases can contain variables
 - If execution cannot proceed, variables are instantiated, again by symbolic terms
- Pays off if large search spaces can be discarded distinct (Cons 1 (Cons 1 x)) is false for every x
 No further instantiations for x

Implementations of narrowing

- Programming language with native narrowing currently still too slow
- Lazy execution with outer refinement loop results in many recomputations, but fast

Limitations

Quickcheck only checks executable specifications:

- No equality on functions with infinite domain
- No axiomatic specifications

- 1 Introduction
- 2 Isabelle's Standard Proof Methods
- Sledgehammer
- 4 Quickcheck: Counterexamples by Testing
- 5 Nitpick: Counterexamples by SAT Solving

Finite model finder

Based on SAT via Kodkod (Alloy's backend)

Soundly approximates infinite types

Nitpick: Demo

Nitpick: Architecture

Nitpick: Basic translation

For fixed finite cardinalities (1, 2, 3, ..., 10)

First-order:

Higher-order args of type
$$\sigma \to \tau \mapsto \underbrace{A \times \cdots \times A}_{|\sigma| \text{ times}}$$

Nitpick: Datatypes

Soundly approximated by finite sets (3-valued logic)

```
Efficient axiomatization:
```

Subterm-closed substructures (Kuncak & Jackson)

Examples

```
nat: \{0, Suc 0, Suc (Suc 0)\}\ \alpha list: \{[], [a_1], [a_2], [a_2, a_1]\}
```

Motto: Let the SAT solver spin!

(and trust Kodkod's symmetry breaking)

Nitpick: Inductive predicates

p is the least solution to p = F(p) for some F

Naive idea: Take p = F(p) as p's specification!

Unsound in general, but:

- Sound if p is well-founded
- Sound for negative occurrences of p

Otherwise: Unroll! (cf. Biere, Cimatti, Clarke & Zhu)
$$p_0 = (\lambda x. \text{ False})$$
 $p_{i+1} = F(p_i)$

Nitpick: Success stories

Algebraic methods (Guttman, Struth & Weber)

C++ memory model (Bl., Weber, Batty, Owens & Sarkar)

Soundness bugs in TPS and LEO-II

Typical fan mail:

"Last night I got stuck on a goal I was sure was a theorem. After 5–10 minutes I gave Nitpick a try, and within a few secs it had found a splendid counterexample—despite the mess of locales and type classes in the context!"

Conclusion

Isabelle increasingly relies on external tools

ΔΤ

Conclusion

Isabelle increasingly relies on external tools

Many benefits to everybody!

To Isabelle users:

- More proofs for free
- Quick feedback

To external tool users:

- Foundational approach
- ... within powerful logic

. Maua ..aaua .ai+a+iaua (1)

To tool developers:

Wish list to tool authors

- \star Fast (< 30 s)
- * Scalable
- * Expressive logic
- ⋆ Nice proofs/certificates
- ★ Standard formats (in & out)
- ★ Easy installation (Linux, Mac, Win)
- [* Sound, complete]
- [* Multicore-aware]