
Automatic Proof and Disproof
in Isabelle/HOL

Jasmin Blanchette, Lukas Bulwahn,
Tobias Nipkow

Fakultät für Informatik
TU München

1 Introduction

2 Isabelle’s Standard Proof Methods

3 Sledgehammer

4 Quickcheck: Counterexamples by Testing

5 Nitpick: Counterexamples by SAT Solving

1 Introduction

2 Isabelle’s Standard Proof Methods

3 Sledgehammer

4 Quickcheck: Counterexamples by Testing

5 Nitpick: Counterexamples by SAT Solving

A tale of two worlds

FOL HOL

f (s, t) f s t, f s, λx .t

Otter (1987) Isabelle (1986)

They did not talk to each other
because they spoke different languages.

This is the tale of how these two worlds
began to understand and boost each other.

Isabelle

• is an interactive theorem prover

• that has always embraced automation

• but without sacrificing soundness:

All proofs
must ultimately go through the Isabelle kernel

This is the LCF principle (Robin Milner).

Two decades of Isabelle development

1990s Basic proof automation
Our own proof search in ML:

simplifier, automatic provers, arithmetic

2000s Embrace external tools
Let them do the proof search,
but don’t trust them:

ATPs (FOL provers, “Sons of Otter”)
SMT solvers
SAT solvers
Programming languages

1 Introduction

2 Isabelle’s Standard Proof Methods

3 Sledgehammer

4 Quickcheck: Counterexamples by Testing

5 Nitpick: Counterexamples by SAT Solving

Simplifier
N.

• First and higher-order equations (λ)

• Conditional equations

• Contextual simplification

• Special solvers (eg orderings)

• Arithmetic

• Case splitting (triggered by if and case)

• Large library of default equations

Isabelle’s workhorse

The power of Isabelle’s internal automated proof
methods

• relies on large sets of default rules

• that are user-extensible ([simp])

• and tuned over time.

Tableaux prover
Paulson

• Based on leanTAP (Beckert & Posegga)

• Generic

• User-extensible by intro and elim rules

• Proof search in ML,
proof checking via Isabelle kernel

• Works well for pure logic and set theory

• Does not know anything about equality

Isabelle Demo

1 Introduction

2 Isabelle’s Standard Proof Methods

3 Sledgehammer

4 Quickcheck: Counterexamples by Testing

5 Nitpick: Counterexamples by SAT Solving

Sledgehammer
Paulson et al.

• Connects Isabelle with ATPs and SMT solvers
E, SPASS, Vampire, CVC3, Yices, Z3, . . .

• One-click invocation:
• Users don’t need to select facts
• . . . or ensure the problem is first-order

• Exploits local parallelism, remote servers

Sledgehammer: Demo

Sledgehammer: Architecture

Sledgehammer

Relevance filter

E SPASS Z3 CVC3 Yices

Relevance filter

ATP translation SMT tr. SMT translation

Metis
proof

Metis
or SMT
proof

Metis
or SMT
proof

Metis
or SMT
proof

Metis
proof

Metis
proof

Vampire

Sledgehammer: Fact selection
Meng & Paulson

Provers perform poorly given 1000s of facts

A lightweight, symbol-based filter greatly improves
the success rate

Number of facts is optimized for each prover

Sledgehammer: Translation
Meng & Paulson Bl., Böhme & Smallbone

Source: higher-order, polymorphism + type classes

Target: first-order, untyped/simply-typed

1 Firstorderize
• SK combinators, λ-lifting
• Explicit application operator

2 Encode types
• Monomorphize
• . . . or encode polymorphism

Sledgehammer: Reconstruction
Paulson & Susanto Böhme & Weber

Four approaches (the 4 Rs):

A. Re-find using Metis

B. Rerun external prover

C. Recheck stored proof

D. Recast into Isar proof

A. Re-find using Metis

lemma length (tl xs) ≤ length xs
by (metis append Nil2 append eq conv conj

drop eq Nil drop tl tl.simps(1))

Usually fast and reliable

Metis sometimes too slow (5% loss on avg)

B. Rerun external prover

lemma length (tl xs) ≤ length xs
by (smt append Nil2 append eq conv conj

drop eq Nil drop tl tl.simps(1))

Reinvokes the SMT solver each time!

C. Recheck stored proof

lemma length (tl xs) ≤ length xs
by (smt append Nil2 append eq conv conj

drop eq Nil drop tl tl.simps(1))

Fast
No need for SMT solver for replay

Fragile

D. Recast into Isar proof

lemma length (tl xs) ≤ length xs
proof –
have tl [] = [] by (metis tl.simps(1))
hence ∃u. xs @ u = xs ∧ tl u = [] by (metis append Nil2)
hence tl (drop (length xs) xs) = [] by (metis append eq conv conj)
hence drop (length xs) (tl xs) = [] by (metis drop tl)
thus length (tl xs) ≤ length xs by (metis drop eq Nil)

qed

Fast, self-explanatory

Experimental, bulky

Sledgehammer: Judgment Day
Böhme & N. Bl., Böhme & Paulson

• 1240 goals arising in 7 older theories
Arrow, FFT, FTA, Hoare, Jinja, NS, SN

• In 2010: E, SPASS, Vampire (5 to 120 s)
ESV× 5 s ≈ V× 120 s!

• In 2011: Also E-SInE, CVC3, Yices, Z3 (30 s)
Z3 > V!

2010

54% 46%

3 ATPs x 30s
2010

54% 46%

3 ATPs x 30s

66%

34%

3 ATPs x 30 s
nontrivial goals

2010

54% 46%

3 ATPs x 30s

66%

34%

3 ATPs x 30 s
nontrivial goals

2010

39%

61%

(4 ATPs + 3 SMTs) x 30s

54% 46%

(4 ATPs + 3 SMTs) x 30s
nontrivial goals

2011

Sledgehammer & Teaching
Paulson

Old way: Low-level tactics + lemma libraries

New way: Isar + Sledgehammer + simp etc.

lemma blah
sorry
proof –
have blah0 sorryby (metis foo bar)
hence blah1 sorryby metis
hence blah2 sorryby auto
thus blah sorryby (metis baz)

qed
sorry

Sledgehammer: Success story
Guttman, Struth & Weber

Developed large Isabelle/HOL repository of algebras
for modeling imperative programs
(Kleene Algebra, Hoare logic, . . . , ≈ 1000 lemmas)

Intricate refinement and termination theorems

Surprise: Sledgehammer and Z3 automate
algebraic proofs at textbook level!

“The integration of ATP, SMT, and Nitpick is for
our purposes very very helpful.” — G. Struth

Theorem proving and testing

Testing can show only the presence of errors,
but not their absence. (Dijkstra)

Testing cannot prove theorems,
but it can refute conjectures!

Two facts of life:

• 95% of all conjectured theorems are wrong.

• Theorem proving is an expensive debugging
technique.

Theorem provers need counterexample finders!

1 Introduction

2 Isabelle’s Standard Proof Methods

3 Sledgehammer

4 Quickcheck: Counterexamples by Testing

5 Nitpick: Counterexamples by SAT Solving

Quickcheck
Berghofer & N. Bul.

• Adds lightweight validation by testing

• Motivated by Haskell’s QuickCheck

• Employs Isabelle’s code generator

• Quick response time

• No-click invocation:
automatic after parsing a proposition

Quickcheck: Demo

Quickcheck
Berghofer & N. Bul.

• Covers different testing approaches
• Random and exhaustive testing
• Smart test data generators
• Narrowing-based testing

• Creates test data generators automatically

Test generators for datatypes

Fast iteration over the large number of tests using
continuation-passing-style programming:

For datatype α list = Nil | Cons α (α list)

we create a test function for property P :

testαlist P =
P Nil andalso
testα (λx . testαlist (λxs.P (Cons x xs)))

Test generators for predicates

Testing propositions with preconditions

distinct xs =⇒ distinct (remove1 x xs)

Problem:

Exhaustive testing creates useless test data

Solution:

Use precondition’s definition for smarter generator

Test generators for predicates

From the definition:

distinct Nil = True
distinct (Cons x xs) = (x /∈ xs ∧ distinct xs)

we create a test function for property P :

test-distinctαlist P =
P Nil andalso
testα (λx . test-distinctαlist (λxs.

if x /∈ xs then P (Cons x xs) else True))

Non-distinct lists are never generated

Test generators for predicates

Construct generators using data flow analysis:

1 Transform predicates to system of horn clauses
x /∈ xs =⇒ distinct xs =⇒ distinct (Cons x xs)

2 Perform data flow analysis:
which variables can be computed,
which variables must be generated?

3 Synthesize test data generator

Narrowing-based testing

• Symbolic execution with demand-driven
refinement:
• Test cases can contain variables
• If execution cannot proceed,

variables are instantiated,
again by symbolic terms

• Pays off if large search spaces can be discarded

distinct (Cons 1 (Cons 1 x)) is false for every x

No further instantiations for x

Implementations of narrowing

• Programming language with native narrowing
currently still too slow

• Lazy execution with outer refinement loop
results in many recomputations, but fast

Limitations

Quickcheck only checks executable specifications:

• No equality on functions with infinite domain

• No axiomatic specifications

1 Introduction

2 Isabelle’s Standard Proof Methods

3 Sledgehammer

4 Quickcheck: Counterexamples by Testing

5 Nitpick: Counterexamples by SAT Solving

Nitpick
Bl. & N.

Finite model finder

Based on SAT via Kodkod (Alloy’s backend)

Soundly approximates infinite types

Nitpick: Demo

Nitpick: Architecture

NitpickAlloy

Kodkod

SAT
Solver

 HOL

 FOL

 prop. logic

Nitpick: Basic translation

For fixed finite cardinalities (1, 2, 3, . . . , 10)

First-order:

τ1 → · · · → τn → bool 7→ A1 × · · · × An

τ1 → · · · → τn → τ 7→ A1 × · · · × An × A
+ constraint

Higher-order args of type σ → τ 7→
A× · · · × A︸ ︷︷ ︸
|σ| times

Nitpick: Datatypes

Soundly approximated by finite sets (3-valued logic)

Efficient axiomatization:
Subterm-closed substructures (Kuncak & Jackson)

Examples
nat: {0, Suc 0, Suc (Suc 0)}
α list: {[], [a1], [a2], [a2, a1]}

Motto: Let the SAT solver spin!
(and trust Kodkod’s symmetry breaking)

Nitpick: Inductive predicates

p is the least solution to p = F (p) for some F

Naive idea: Take p = F (p) as p’s specification!

Unsound in general, but:

• Sound if p is well-founded

• Sound for negative occurrences of p

Otherwise: Unroll! (cf. Biere, Cimatti, Clarke & Zhu)

p0 = (λx . False) pi+1 = F (pi)

Nitpick: Success stories

Algebraic methods (Guttman, Struth & Weber)

C++ memory model (Bl., Weber, Batty, Owens & Sarkar)

Soundness bugs in TPS and LEO-II

Typical fan mail:

“Last night I got stuck on a goal I was sure was a
theorem. After 5–10 minutes I gave Nitpick a try,
and within a few secs it had found a splendid
counterexample—despite the mess of locales and
type classes in the context!”

Conclusion

Isabelle increasingly relies on external tools

SMT SAT
Prolog

ML

??

Kodkod

Haskell

ATPs

Conclusion
Isabelle increasingly relies on external tools

Many benefits to everybody!

To Isabelle users:
• More proofs for free
• Quick feedback
To external tool users:
• Foundational approach
• . . . within powerful logic
To tool developers:
• More users, citations (!)
• Proof rechecking uncovers (severe) bugs

Wish list to tool authors

? Fast (< 30 s)

? Scalable

? Expressive logic

? Nice proofs/certificates

? Standard formats (in & out)

? Easy installation (Linux, Mac, Win)

?[Sound, complete]

?[Multicore-aware]

