

NICTA

[1]

 $[2,3,4^a]$

 $[5,6^b,7]$

 $[8,9,10^c]$

[21^g,22,23]

Rough timeline

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

Slide 1

→ Intro & motivation, getting started → Foundations & Principles • Lambda Calculus, natural deduction • Higher Order Logic

Content

Term rewriting

→ Proof & Specification Techniques
 Isar [11,12^d]
 Inductively defined sets, rule induction [13°,15]
 Datatypes, recursion, induction [16,17^f,18,19]
 Calculational reasoning, mathematics style proofs [20]

 a a1 out; b a1 due; c a2 out; d a2 due; c session break; f a3 out; g a3 due

Hoare logic, proofs about programs

Slide 2

DATATYPES IN ISAR

Slide 3

Datatype case distinction


```
\begin{array}{ll} \mathbf{proof} \ (\mathsf{case} \ term) & \\ & \mathbf{case} \ \mathsf{Constructor}_1 \\ \vdots \\ & \mathbf{next} \\ \vdots \\ & \mathbf{next} \\ & \mathbf{case} \ (\mathsf{Constructor}_k \ \vec{x}) \\ & \cdots \ \vec{x} \ \cdots \\ & \mathbf{qed} \\ \\ & \mathbf{case} \ (\mathsf{Constructor}_i \ \vec{x}) \ \equiv \\ & \mathbf{fix} \ \vec{x} \ \mathbf{assume} \ \mathsf{Constructor}_i \ \vdots "term = \mathsf{Constructor}_i \ \vec{x}" \end{array}
```

Slide 4

2

```
Structural induction for type nat
```



```
\begin{array}{lll} \mathbf{show} \; P \; n \\ & \mathbf{proof} \; (\mathsf{induct} \, n) \\ & \mathbf{case} \; 0 & \equiv \; \mathbf{let} \; ? case = P \; 0 \\ & \dots & \\ & \mathbf{show} \; ? case \\ & \mathbf{next} \\ & \mathbf{case} \; (\mathsf{Suc} \, n) & \equiv \; \mathbf{fix} \; n \; \mathbf{assume} \; \mathsf{Suc:} \; P \; n \\ & \dots & \\ & \dots & \vdots \\ & \cdots \; n \; \cdots \\ & \mathbf{show} \; ? case \\ & \mathbf{qed} \end{array}
```

Slide 5

Structural induction with \Longrightarrow and \bigwedge


```
show "\bigwedge x. A n \Longrightarrow P n"
proof (induct n)
                                  \equiv fix x assume 0: "A 0"
  case 0
                                      let ?case = "P 0"
  show ?case
next
  case (Suc n)
                                  \equiv fix n and x
                                      assume Suc: "\bigwedge x. A n \Longrightarrow P n"
  . . .
                                                      "A (Suc n)"
  \cdots n \cdots
                                      let ?case = "P (Suc n)"
  \mathbf{show}\ ? case
qed
```

Slide 6

DEMO: DATATYPES IN ISAR

Slide 7

O • NICTA

DEMO: REGULAR EXPRESSIONS

Slide 8

3

We have seen today ...

- → Datatypes in Isar
- → Defining regular wxpressions as a data type
- → Playing with recursion and induction

Slide 9