COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

¢

R

NICTA

Content

[Intro & motivation, getting started

[J Foundations & Principles

e Lambda Calculus, natural deduction
e Higher Order Logic
e Term rewriting

[1 Proof & Specification Techniques

o [sar

¢ Inductively defined sets, rule induction

e Datatypes, recursion, induction

e Calculational reasoning, mathematics style proofs
e Hoare logic, proofs about programs

2al out: ’al due; a2 out; “a2 due: ¢session break: ¥ a3 out: a3 due

()@

NICTA

Rough timeline

[1]

[2,3,4%]
5,6°,7]
[8,9,10°]

[11,129]
[13¢,15]
[16,177,18,19]
[20]
[219,22,23]

Datatypes

Example:

Properties:

[] Constructors:

[1 Distinctness:
[Injectivity:

datatype ’alist = Nil | Cons 'a ™a list”

Nil + 'alist
Cons :: ’'a='alist="alist
Nil £ Cons X xs

(Consxxs=Consyys) =(X=Yy A XS =VS)

NICTA

The General Case

NICTA
datatype (ai,...,an)7 = Ci7Tiq ... Tin,
|
‘ Ck Tkl -+ Tkng
[0 Constructors: CiuTiit = ... = Tin, = (Q1,...,0pn) T
[1 Distinctness: Ci...#GC; ... fi#y

I Injectivity: (Cz T1...Tn, =G yl...yni) = (331 =N NTp, = yni)

Distinctness and Injectivity applied automatically

How Is this Type Defined?

(N I N [I

datatype ’alist = Nil | Cons 'a ™a list”

internally defined using typedef

hence: describes a set

set = trees with constructors as nodes

inductive definition to characterise which trees belong to datatype

More detail: HOL/Datatype.thy

NICTA

Datatype Limitations

Must be definable as set.

[Infinitely branching ok.
[J Mutually recursive ok.
[1 Strictly positive (right of function arrow) occurrence ok.

Not ok:

datatype t = C (t = bool)
| D ((bool = t) = bool)
|

E ((t = bool) = bool)

Because: Cantor’s theorem (« set is larger than «)

NICTA

Case

Every datatype introduces a case construct, e.g.

(casexsof [| = ... |y #ys = ...

In general: one case per constructor

[1 Nested patterns allowed: z#y#zs
[Dummy and default patterns with _
[0 Binds weakly, needs () in context

NICTA

Cases

NICTA

apply (case_tac t)

creates k subgoals

[t=Cix1...2p;...] = ...

one for each constructor C;

NICTA

DEMO

NICTA

RECURSION

10

Why nontermination can be harmful

' All functions in HOL must be total

How about f x = f x + 17

Subtract f x on both sides.

11

)

NICTA

Primitive Recursion

NICTA

primrec guarantees termination structurally

Example primrec def:

primrec app :: "alist = "alist = ’a list”
where

"app Nil ys = ys”

"app (Cons x xs) ys = Cons x (app Xs ys)”

12

(Je

The General Case

NICTA

If 7 is a datatype (with constructors C,...,Cy) then f :: 7 = 7/ can be defined
by primitive recursion

f(Cl Yyr1 - - - y1,n1) —
fCryka - Ykny) = Tk

The recursive calls in r; must be structurally smaller
(ofthe form fa; ... yij; ... ap)

13

How does this Work?

Example:

NICTA

primrec just fancy syntax for a recursion operator

list.rec :: "b = (la="alist="b = 'b) = 'alist = 'b”
list_rec f; f> NIl = fi
list.rec f1 fo (Consx xs) = fox as (listrec f1 fo xs)

app = list_rec (Ays. ys) (Ax xs xs’. A\ys. Cons x (x5’ ys))

primrec app :: "alist = 'alist = ’a list”

where

"app Nil ys = ys”
"app (Cons x xs) ys = Cons x (app Xs ys)”

14

list_rec

NICTA

Defined: automatically, first inductively (set), then by epsilon

(xs,xs’") € list_rel fi fo
(Nil, f1) € list_rel f1 fo (Cons x xs, fo x xs xs’) € list_rel f1 fo

list_rec f1 fo xs = SOME y. (xs,y) € list_rel fi f

Automatic proof that set def indeed is total function
(the equations for list_rec are lemmas!)

15

NICTA

PREDEFINED DATATYPES

16

nat is a datatype

NICTA

datatype nat = 0 | Suc nat

Functions on nat definable by primrec!

primrec
/0 =
f(Sucn) = .. fn..

17

Option

NICTA

datatype ’'a option = None | Some 'a

Important application:
'b = ’aoption ~ partial function:

None ~ noresult
Somea ~ resulta

Example:

primrec lookup :: '’k = (’k x 'v) list = 'v option
where

lookup K] = None |

lookup k (x #xs) = (if fst x = k then Some (snd x) else lookup k xs)

18

NICTA

DEMO: PRIMREC

19

NICTA

INDUCTION

20

Structural induction

P xs holds for all lists xs if

0 P Nil
[0 and for arbitrary z and xs, P xs = P (x#xs)

Induction theorem list.induct:
[P []; N\alist. Plist = P (a+#tlist)] = P list

[1 General proof method for induction: (induct x)

e x must be a free variable in the first subgoal.
e type of x must be a datatype.

21

NICTA

Basic heuristics

NICTA

Theorems about recursive functions are proved by induction

Induction on argument number ¢ of f
If fis defined by recursion on argument number

22

Example

NICTA

A tail recursive list reverse:

primrec itrev :: 'alist = ’a list = 'a list
where
itrev |] Ys = ys |

itrev (x#xs) ys = itrev zs (x#ys)

lemma itrev xs || =rev zs

23

NICTA

DEMO: PROOF ATTEMPT

24

Generalisation

Replace constants by variables

lemma itrev xs ys = rev xsQys

Quantify free variables by V
(except the induction variable)

lemma Vys. itrev s ys = rev xsQys

25

NICTA

We have seen today ...

N I O [y I

Datatypes
Primitive recursion
Case distinction
Structural Induction

26

NICTA

