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Content

[ Intro & motivation, getting started

[J Foundations & Principles

e Lambda Calculus, natural deduction
e Higher Order Logic
e Term rewriting

[1 Proof & Specification Techniques

o [sar

¢ Inductively defined sets, rule induction

e Datatypes, recursion, induction

e Calculational reasoning, mathematics style proofs
e Hoare logic, proofs about programs
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Datatypes

Example:

Properties:

[] Constructors:

[1 Distinctness:
[ Injectivity:

datatype ’alist = Nil | Cons 'a ™a list”

Nil + 'alist
Cons :: ’'a='alist="alist
Nil £ Cons X xs

(Consxxs=Consyys) =(X=Yy A XS =VS)
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The General Case

NICTA
datatype (ai,...,an)7 = Ci7Tiq ... Tin,
|
‘ Ck Tkl -+ Tkng
[0 Constructors: CiuTiit = ... = Tin, = (Q1,...,0pn) T
[1 Distinctness: Ci...#GC; ... fi#y

I Injectivity: (Cz T1...Tn, =G yl...yni) = (331 =N NTp, = yni)

Distinctness and Injectivity applied automatically



How Is this Type Defined?
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datatype ’alist = Nil | Cons 'a ™a list”

internally defined using typedef

hence: describes a set

set = trees with constructors as nodes

inductive definition to characterise which trees belong to datatype

More detail: HOL/Datatype.thy
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Datatype Limitations

Must be definable as set.

[ Infinitely branching ok.
[J Mutually recursive ok.
[1 Strictly positive (right of function arrow) occurrence ok.

Not ok:

datatype t = C (t = bool)
| D ((bool = t) = bool)
|

E ((t = bool) = bool)

Because: Cantor’s theorem (« set is larger than «)
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Case

Every datatype introduces a case construct, e.g.

(casexsof [| = ... |y #ys = ...

In general: one case per constructor

[1 Nested patterns allowed: z#y#zs
[ Dummy and default patterns with _
[0 Binds weakly, needs () in context
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Cases

NICTA

apply (case_tac t)

creates k subgoals

[t=Cix1...2p;...] = ...

one for each constructor C;
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Why nontermination can be harmful

' All functions in HOL must be total

How about f x = f x + 17

Subtract f x on both sides.
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Primitive Recursion
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primrec guarantees termination structurally

Example primrec def:

primrec app :: "alist = "alist = ’a list”
where

"app Nil ys = ys”

"app (Cons x xs) ys = Cons x (app Xs ys)”
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The General Case
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If 7 is a datatype (with constructors C,...,Cy) then f :: 7 = 7/ can be defined
by primitive recursion

f(Cl Yyr1 - - - y1,n1) —
fCryka - Ykny) = Tk

The recursive calls in r; must be structurally smaller
(ofthe form fa; ... yij; ... ap)
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How does this Work?

Example:

NICTA

primrec just fancy syntax for a recursion operator

list.rec :: "b = (la="alist="b = 'b) = 'alist = 'b”
list_rec f; f> NIl = fi
list.rec f1 fo (Consx xs) = fox as (listrec f1 fo xs)

app = list_rec (Ays. ys) (Ax xs xs’. A\ys. Cons x (x5’ ys))

primrec app :: "alist = 'alist = ’a list”

where

"app Nil ys = ys”
"app (Cons x xs) ys = Cons x (app Xs ys)”
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list_rec
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Defined: automatically, first inductively (set), then by epsilon

(xs,xs’") € list_rel fi fo
(Nil, f1) € list_rel f1 fo (Cons x xs, fo x xs xs’) € list_rel f1 fo

list_rec f1 fo xs = SOME y. (xs,y) € list_rel fi f

Automatic proof that set def indeed is total function
(the equations for list_rec are lemmas!)
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PREDEFINED DATATYPES
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nat is a datatype
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datatype nat = 0 | Suc nat

Functions on nat definable by primrec!

primrec
/0 =
f(Sucn) = .. fn..
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Option
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datatype ’'a option = None | Some 'a

Important application:
'b = ’aoption ~ partial function:

None ~ noresult
Somea ~ resulta

Example:

primrec lookup :: '’k = (’k x 'v) list = 'v option
where

lookup K ] = None |

lookup k (x #xs) = (if fst x = k then Some (snd x) else lookup k xs)
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DEMO: PRIMREC
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INDUCTION

20



Structural induction

P xs holds for all lists xs if

0 P Nil
[0 and for arbitrary z and xs, P xs = P (x#xs)

Induction theorem list.induct:
[P []; N\alist. Plist = P (a+#tlist)] = P list

[1 General proof method for induction: (induct x)

e x must be a free variable in the first subgoal.
e type of x must be a datatype.
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Basic heuristics
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Theorems about recursive functions are proved by induction

Induction on argument number ¢ of f
If fis defined by recursion on argument number
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Example
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A tail recursive list reverse:

primrec itrev :: 'alist = ’a list = 'a list
where
itrev |] Ys = ys |

itrev (x#xs) ys = itrev zs (x#ys)

lemma itrev xs || =rev zs
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DEMO: PROOF ATTEMPT
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Generalisation

Replace constants by variables

lemma itrev xs ys = rev xsQys

Quantify free variables by V
(except the induction variable)

lemma Vys. itrev s ys = rev xsQys
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We have seen today ...
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Datatypes
Primitive recursion
Case distinction
Structural Induction
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