

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

Content

	Rough timeline
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[2,3,4 ^a]
 Higher Order Logic 	$[5,6^b,7]$
Term rewriting	[8,9,10 ^c]
→ Proof & Specification Techniques	
• Isar	$[11,12^d]$
 Inductively defined sets, rule induction 	[13 ^e ,15]
 Datatypes, recursion, induction 	[16,17 ^f ,18,19]
 Calculational reasoning, mathematics style proofs 	[20]
 Hoare logic, proofs about programs 	[21 ^g ,22,23]

 $[^]a$ a1 out; b a1 due; c a2 out; d a2 due; e session break; f a3 out; g a3 due

Last Time

- → More Isar
- → Fix/Obtain
- → Moreover/Ultimately
- → Mixing Proof Styles

SPECIFICATION TECHNIQUES: SETS

Sets in Isabelle

Type 'a set: sets over type 'a

- \rightarrow {}, { e_1, \ldots, e_n }, {x. P x}
- \bullet $e \in A$, $A \subseteq B$
- \rightarrow $A \cup B$, $A \cap B$, A B, -A
- $\rightarrow \bigcup x \in A. \ B \ x, \quad \bigcap x \in A. \ B \ x, \quad \bigcap A, \quad \bigcup A$
- \rightarrow $\{i...j\}$
- \rightarrow insert :: $\alpha \Rightarrow \alpha$ set $\Rightarrow \alpha$ set
- \rightarrow $f'A \equiv \{y. \exists x \in A. y = f x\}$
- → ...

Proofs about Sets

Natural deduction proofs:

- ightharpoonup equalityl: $[\![A\subseteq B;\; B\subseteq A]\!] \Longrightarrow A=B$
- \rightarrow subsetl: $(\bigwedge x. \ x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$
- → ... (see Tutorial)

Bounded Quantifiers

- $\Rightarrow \forall x \in A. \ P \ x \equiv \forall x. \ x \in A \longrightarrow P \ x$
- $\Rightarrow \exists x \in A. \ P \ x \equiv \exists x. \ x \in A \land P \ x$
- \rightarrow ball: $(\bigwedge x. \ x \in A \Longrightarrow P \ x) \Longrightarrow \forall x \in A. \ P \ x$
- \rightarrow bspec: $\llbracket \forall x \in A. \ P \ x; x \in A \rrbracket \Longrightarrow P \ x$
- \rightarrow bexl: $\llbracket P \ x; x \in A \rrbracket \Longrightarrow \exists x \in A. \ P \ x$
- ightharpoonup bexE: $[\exists x \in A. \ P \ x; \land x. \ [x \in A; P \ x]] \Longrightarrow Q] \Longrightarrow Q$

DEMO: SETS

The Three Basic Ways of Introducing Types

→ typedecl: by name only

Example: **typedecl** names
Introduces new type *names* without any further assumptions

→ types: by abbreviation

Example: **types** α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ " Introduces abbreviation *rel* for existing type $\alpha \Rightarrow \alpha \Rightarrow bool$ Type abbreviations are immediately expanded internally

→ typedef: by definiton as a set

Example: **typedef** new_type = "{some set}" <proof> Introduces a new type as a subset of an existing type.

The proof shows that the set on the rhs in non-empty.

How typedef works

Example: Pairs

$$(\alpha, \beta)$$
 Prod

- ① Pick existing type: $\alpha \Rightarrow \beta \Rightarrow bool$
- ② Identify subset:

$$(\alpha, \beta)$$
 Prod = $\{f. \exists a \ b. \ f = \lambda(x :: \alpha) \ (y :: \beta). \ x = a \land y = b\}$

- ③ We get from Isabelle:
 - functions Abs_Prod, Rep_Prod
 - both injective
 - Abs_Prod (Rep_Prod x) = x
- We now can:
 - define constants Pair, fst, snd in terms of Abs_Prod and Rep_Prod
 - derive all characteristic theorems
 - forget about Rep/Abs, use characteristic theorems instead

DEMO: INTRODUCING NEW TYPES

INDUCTIVE DEFINITIONS

Example

$$\frac{[\![e]\!]\sigma = v}{\langle \mathsf{skip}, \sigma \rangle \longrightarrow \sigma} \qquad \frac{[\![e]\!]\sigma = v}{\langle \mathsf{x} := \mathsf{e}, \sigma \rangle \longrightarrow \sigma[x \mapsto v]}$$

$$\frac{\langle c_1, \sigma \rangle \longrightarrow \sigma' \quad \langle c_2, \sigma' \rangle \longrightarrow \sigma''}{\langle c_1; c_2, \sigma \rangle \longrightarrow \sigma''}$$

$$\frac{[\![b]\!]\sigma = \mathsf{False}}{\langle \mathsf{while}\; b\; \mathsf{do}\; c, \sigma \rangle \longrightarrow \sigma}$$

$$\frac{[\![b]\!]\sigma = \mathsf{True} \quad \langle c, \sigma \rangle \longrightarrow \sigma' \quad \langle \mathsf{while} \ b \ \mathsf{do} \ c, \sigma' \rangle \longrightarrow \sigma''}{\langle \mathsf{while} \ b \ \mathsf{do} \ c, \sigma \rangle \longrightarrow \sigma''}$$

What does this mean?

- $ightharpoonup \langle c, \sigma \rangle \longrightarrow \sigma'$ fancy syntax for a relation $(c, \sigma, \sigma') \in E$
- \rightarrow relations are sets: $E :: (com \times state \times state)$ set
- → the rules define a set inductively

But which set?

Simpler Example

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers N
- \rightarrow But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- → N is the **smallest** set that is **consistent** with the rules.

Why the smallest set?

- \rightarrow Objective: **no junk**. Only what must be in X shall be in X.
- → Gives rise to a nice proof principle (rule induction)
- → Alternative (greatest set) occasionally also useful: coinduction

Rule Induction

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

induces induction principle

$$\llbracket P \ 0; \ \bigwedge n. \ P \ n \Longrightarrow P \ (n+1) \rrbracket \Longrightarrow \forall x \in X. \ P \ x$$

DEMO: INDUCTIVE DEFINITONS

We have learned today ...

- → Sets
- → Type Definitions
- → Inductive Definitions