e

NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

—

Slide 1
e
Content
NICTA
Rough timeline
O Intro & motivation, getting started [1]
O Foundations & Principles

e Lambda Calculus, natural deduction [2,3,49]
e Higher Order Logic [5,6°,7]
e Term rewriting [8,9,10°]

O Proof & Specification Techniques
e Isar [11,124
e Inductively defined sets, rule induction [13¢,15]
e Datatypes, recursion, induction [16,17/,18,19]
e Calculational reasoning, mathematics style proofs [20]
e Hoare logic, proofs about programs [219,22,23]

“al out; "al due; “a2 out; “a2 due; “session break; fa3 out; “a3 due

Slide 2

e

NICTA

Last Time

0 Equations and Term Rewriting
O Confluence and Termination of reduction systems
O Term Rewriting in Isabelle

Slide 3

e

Applying a Rewrite Rule

NICTA

0 | — r applicable to term ¢[s]
if there is substitution o such thato l = s

0 Result: t[o r]

0 Equationally: ¢[s] = t[o r]
Example:

Rule: 0+n —n

Term: a+ (0+ (b+c¢))

Substitution: o = {n > b+c}

Result: a+ (b+¢)

Slide 4

Qe

Conditional Term Rewriting

Rewrite rules can be conditional:

NICTA

[P...P]=1l=r

is applicable to term t[s] with o if
O ol=sand

Ooh,..., o P, are provable by rewriting.

Slide 5

Qe

Rewriting with Assumptions

NICTA

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma "f z =

simp

(simp (no_asm))
(simp (no_asm_use))
(simp (no_asm_simp))

grhgrx=fax= fa=2"

use and simplify assumptions
ignore assumptions

simplify , but do not use assumptions
use, but do not simplify assumptions

Slide 6

Preprocessing

Example:

Preprocessing (recursive) for maximal simplification power:

-A +— A= False
A—B — A=B
ANB — AB
Ve. Az — Atz
A — A=True

(p—qA-T)As
-

p=q=True p=r = False

Slide 7

s =True

DEMO

Slide 8

Qe

NICTA

Qe

NICTA

e

Case splitting with simp NICTA

P (if Athen s elset)

(A= Ps)A(-A— P1)

Automatic

P (caseeof 0 = a|Sucn = b)

(e=0— Pa)A(Vn.e=Sucn — Pb)

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

Slide 9

e

Congruence Rules
NICTA

congruence rules are about using context

Example : in P — @ we could use P to simplify terms in Q
For = hardwired (assumptions used in rewriting)
For other operators expressed with conditional rewriting.
Example: [P=P;P' = Q=Q= (P — Q)= (P — Q)

Read: to simplify P — @
0 first simplify P to P’
0O then simplify Q to Q' using P’ as assumption
0 the resultis P' — Q'

Slide 10

e

More Congruence
NICTA

Sometimes useful, but not used automatically (slowdown):
conjcong: [P=P;P = Q=Q]= (PANQ)=(P'ANQ")

Context for if-then-else:
ifcong: [b=cc=z=u-c=y=1v] =

(if b then z else y) = (if c then u else v)

Prevent rewriting inside then-else (default):
if_weak_cong: b = ¢ = (if b then z else y) = (if ¢ then z else y)

O declare own congruence rules with [cong] attribute
O delete with [cong del]

Slide 11

e

Ordered rewriting NICTA

Problem: z 4 y — y + « does not terminate

Solution: use permutative rules only if term becomes
lexicographically smaller.

Example: b+a~»a+bbutnota+b~b+a.

For types nat, int etc:
e lemmas add_ac sort any sum (+)

e lemmas times _ac sort any product (x)

Example: apply (simp add: add_ac) yields
(b+c)+a~-~a+(b+c)

Slide 12

Oe

NICTA

AC Rules

Example for associative-commutative rules:
Associative : ey oz=20(y®2)
Commutative : z0y=y0Ouz

These 2 rules alone get stuck too early (not confluent).

Example: (z0z) 0 (y©v)
Wewant: (z0z)0yov)=v0 @06 (Yo 2)
We get:)0 YoOV)=v6 (Yo (z62))

Weneed: ACrule z0(y0z)=y0o(r0z2)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

Slide 13
Oe
NICTA
DEMO
Slide 14

Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping Ihs of rules.

Definition:
Letl; — r; and lo — ro be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of /; unifies with 5.

Example:
Rules: (1) fz—a ()gy—b @) f(g92)—b
Critical pairs:

WH3) frogz) ad pgr D

@@ {z—y) b g By

Slide 15

Completion

Dfr—a @gy—b @) f(gz)—0b
is not confluent
But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {z gz} a L fgt By,

shows that a = b (because a < b), so we add « — b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

Slide 16

Oe

NICTA

Oe

NICTA

Qe

NICTA

DEMO: WALDMEISTER

Slide 17

Qe

Orthogonal Rewriting Systems
q 4=y NICTA

Definitions:
Arule | — ris left-linear if no variable occurs twice in [.
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

Slide 18

We have learned today ...

0 Conditional term rewriting
O Congruence rules

O AC rules

O More on confluence

Slide 19

10

Qe

NICTA

