
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

λ
→

and HOL

1



Exercises from last time

➜ Construct a type derivation tree for the term λx y z. z x (y x)

➜ Find a unifier (substitution) such that λx y z. ?F y z = λx y z. z (?G x y)

2



Content

Rough timeline

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [2,3,4a]

• Higher Order Logic [5,6b,7]

• Term rewriting [8,9,10c]

➜ Proof & Specification Techniques

• Isar [11,12d]

• Inductively defined sets, rule induction [13e,15]

• Datatypes, recursion, induction [16,17f ,18,19]

• Calculational reasoning, mathematics style proofs [20]

• Hoare logic, proofs about programs [21g,22,23]

aa1 out; ba1 due; ca2 out; da2 due; esession break; fa3 out; ga3 due

3



PREVIEW: PROOFS IN ISABELLE

4



Proofs in Isabelle

General schema:

lemma name: ”<goal>”
apply <method>
apply <method>
. . .

done

➜ Sequential application of methods until
all subgoals are solved.

5



The Proof State

1.
∧
x1 . . . xp.[[A1; . . . ;An]] =⇒ B

2.
∧
y1 . . . yq.[[C1; . . . ;Cm]] =⇒ D

x1 . . . xp Parameters

A1 . . . An Local assumptions

B Actual (sub)goal

6



Isabelle Theories

Syntax:

theory MyTh

imports ImpTh
1

. . . ImpThn

begin

(declarations, definitions, theorems, proofs, ...)∗

end

➜ MyTh: name of theory. Must live in file MyTh.thy

➜ ImpThi: name of imported theories. Import transitive.

Unless you need something special:

theory MyTh imports Main begin . . . end

7



Natural Deduction Rules

A B
A ∧ B

conjI
A ∧B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨B

disjI1/2 A ∨B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI A −→ B A B =⇒ C
C

impE

For each connective (∧,∨, etc):
introduction and elemination rules

8



Proof by assumption

apply assumption

proves

1. [[B1; . . . ;Bm]] =⇒ C

by unifying C with one of the Bi

There may be more than one matching Bi and multiple unifiers.

Backtracking!

Explicit backtracking command: back

9



Intro rules

Intro rules decompose formulae to the right of =⇒.

apply (rule <intro-rule>)

Intro rule [[A1; . . . ;An]] =⇒ A means

➜ To prove A it suffices to show A1 . . . An

Applying rule [[A1; . . . ;An]] =⇒ A to subgoal C:

➜ unify A and C

➜ replace C with n new subgoals A1 . . . An

10



Elim rules

Elim rules decompose formulae on the left of =⇒.

apply (erule <elim-rule>)

Elim rule [[A1; . . . ;An]] =⇒ A means

➜ If I know A1 and want to prove A it suffices to show A2 . . . An

Applying rule [[A1; . . . ;An]] =⇒ A to subgoal C:
Like rule but also

➜ unifies first premise of rule with an assumption

➜ eliminates that assumption

11



DEMO

12



MORE PROOF RULES

13



Iff, Negation, True and False

A =⇒ B B =⇒ A
A = B

iffI
A = B [[A −→ B;B −→ A]] =⇒ C

C
iffE

A = B
A =⇒ B

iffD1
A = B
B =⇒ A

iffD2

A =⇒ False
¬A

notI
¬A A

P
notE

True TrueI False
P

FalseE

14



Equality

t = t refl
s = t
t = s

sym r = s s = t
r = t

trans

s = t P s
P t

subst

Rarely needed explicitly — used implicitly by term rewriting

15



Classical

P = True ∨ P = False
True-False

P ∨ ¬P
excluded-middle

¬A =⇒ False
A

ccontr ¬A =⇒ A
A

classical

➜ excluded-middle , ccontr and classical
not derivable from the other rules.

➜ if we include True-False, they are derivable

They make the logic “classical”, “non-constructive”

16



Cases

P ∨ ¬P
excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case tac term)

17



Safe and not so safe

Safe rules preserve provability

conjI, impI, notI, iffi, refl, ccontr, classical, conjE, disjE

A B
A ∧B

conjI

Unsafe rules can turn a provable goal into an unprovable one

disjI1, disjI2, impE, iffD1, iffD2, notE

A
A ∨B

disjI1

Apply safe rules before unsafe ones

18



DEMO

19



What we have learned so far...

➜ natural deduction rules for ∧, ∨, −→, ¬, iff...

➜ proof by assumption, by intro rule, elim rule

➜ safe and unsafe rules

20



Exercises

➜ Redo the demo alone + exercises

➜ Assignement 1 is out today!

➜ Reminder: DO NOT CHEAT

• Assignments and exams are take-home. This does NOT mean you can work in
groups. Each submission is personal.

• For more info, see Plagiarism Policy

21


