

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

Slide 1

Exercises for last time

- → Download and install Isabelle from
 http://mirror.cse.unsw.edu.au/pub/isabelle/
- → Switch on X-Symbol in ProofGeneral
- → Step through the demo files from the lecture web page
- → Write your own theory file, look at some theorems in the library, try 'find theorem'
- → How many theorems can help you if you need to prove something like "Suc(Suc x))"?
- → What is the name of the theorem for associativity of addition of natural numbers in the library?

Slide 2

Content

Rough tii	meline
-----------	--------

→ Intro & motivation, getting started

[1]

→ Foundations & Principles

 Lambda Calculus, natural deduction 	[2,3,4a]
Higher Order Logic	[5,6 ^b ,7]
Term rewriting	[8,9,10 ^c]

→ Proof & Specification Techniques

• Isar	[11,12 ^d]
 Inductively defined sets, rule induction 	[13 ^e ,15]
Datatypes, recursion, induction	[16,17 ^f ,18,19]
 Calculational reasoning, mathematics style proofs 	[20]
Hoare logic, proofs about programs	[21 ^g ,22,23]

^a a1 out; ^b a1 due; ^c a2 out; ^d a2 due; ^e session break; ^f a3 out; ^g a3 due

Slide 3

λ -calculus

Alonzo Church

- → lived 1903-1995
- → supervised people like Alan Turing, Stephen Kleene
- → famous for Church-Turing thesis, lambda calculus, first undecidability results
- \rightarrow invented λ calculus in 1930's

λ -calculus

- → originally meant as foundation of mathematics
- → important applications in theoretical computer science
- → foundation of computability and functional programming

Slide 4

2

untyped λ -calculus

- → turing complete model of computation
- → a simple way of writing down functions

Basic intuition:

instead of
$$f(x) = x + 5$$

write $f = \lambda x. x + 5$

 $\lambda x. x + 5$

- → a term
- → a nameless function
- → that adds 5 to its parameter

Slide 5

Function Application

NICTA

For applying arguments to functions

$$\begin{array}{ll} \text{instead of} & f(a) \\ \text{write} & f \ a \end{array}$$

Example:
$$(\lambda x. \ x+5) \ a$$

Evaluating: in $(\lambda x. t)$ a replace x by a in t

(computation!)

Example: $(\lambda x. x + 5) (a + b)$ evaluates to (a + b) + 5

Slide 6

THAT'S IT!

Slide 7

O • NICTA

Now Formal

Syntax

Terms

$$t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$$

$$v, x \in V, \quad c \in C, \quad V, C \text{ sets of names}$$

- $\rightarrow v, x$ variables
- $\rightarrow c$ constants
- \rightarrow $(t\ t)$ application
- $\rightarrow (\lambda x. t)$ abstraction

Slide 9

Conventions

- → leave out parentheses where possible
- \Rightarrow list variables instead of multiple λ

Example: instead of $(\lambda y.\ (\lambda x.\ (x\ y)))$ write $\lambda y\ x.\ x\ y$

Rules:

- \rightarrow list variables: $\lambda x. (\lambda y. t) = \lambda x y. t$
- \rightarrow application binds to the left: $x \ y \ z = (x \ y) \ z \neq x \ (y \ z)$
- \rightarrow abstraction binds to the right: $\lambda x. \ x \ y = \lambda x. \ (x \ y) \neq (\lambda x. \ x) \ y$
- → leave out outermost parentheses

Slide 10

Getting used to the Syntax

Example:

```
\begin{array}{l} \lambda x \; y \; z. \; x \; z \; (y \; z) = \\ \\ \lambda x \; y \; z. \; (x \; z) \; (y \; z) = \\ \\ \lambda x \; y \; z. \; ((x \; z) \; (y \; z)) = \\ \\ \lambda x. \; \lambda y. \; \lambda z. \; ((x \; z) \; (y \; z))) = \\ \\ (\lambda x. \; (\lambda y. \; (\lambda z. \; ((x \; z) \; (y \; z))))) \end{array}
```

Slide 11

Computation

Intuition: replace parameter by argument this is called β -reduction

Example

```
(\lambda x \ y. \ f \ (y \ x)) \ 5 \ (\lambda x. \ x) \longrightarrow_{\beta}(\lambda y. \ f \ (y \ 5)) \ (\lambda x. \ x) \longrightarrow_{\beta}f \ ((\lambda x. \ x) \ 5) \longrightarrow_{\beta}f \ 5
```

Defining Computation

eta reduction:

Still to do: define $s[x \leftarrow t]$

Slide 13

Defining Substitution

Easy concept. Small problem: variable capture.

Example:
$$(\lambda x. \ x \ z)[z \leftarrow x]$$

We do **not** want: $(\lambda x. \ x \ x)$ as result.

What do we want?

In $(\lambda y. y. z)$ $[z \leftarrow x] = (\lambda y. y. x)$ there would be no problem.

So, solution is: rename bound variables.

Slide 14

Free Variables

Bound variables: in $(\lambda x.\ t)$, x is a bound variable.

Free variables FV of a term:

$$\begin{split} FV\left(x\right) &= \left\{x\right\} \\ FV\left(c\right) &= \left\{\right\} \\ FV\left(s|t\right) &= FV(s) \cup FV(t) \\ FV\left(\lambda x.\; t\right) &= FV(t) \setminus \left\{x\right\} \end{split}$$

Example: $FV(\lambda x. (\lambda y. (\lambda x. x) y) y x) = \{y\}$

Term t is called **closed** if $FV(t) = \{\}$

Our problematic substitution example, $(\lambda x.\ x.\ z)[z\leftarrow x]$, is problematic because the bound variable x is a free variable of the replacement term "x".

Slide 15

Substitution

$$\begin{array}{ll} y \left[x \leftarrow t\right] &= y & \text{if } x \neq y \\ c \left[x \leftarrow t\right] &= c \\ \\ \left(s_1 \, s_2\right) \left[x \leftarrow t\right] = \left(s_1 [x \leftarrow t] \, s_2 [x \leftarrow t]\right) \\ \\ \left(\lambda x. \, s) \left[x \leftarrow t\right] = \left(\lambda x. \, s\right) & \text{if } x \neq y \text{ and } y \notin FV(t) \\ \\ \left(\lambda y. \, s\right) \left[x \leftarrow t\right] = \left(\lambda z. \, s[y \leftarrow z] [x \leftarrow t]\right) & \text{if } x \neq y \\ \\ \left(\lambda y. \, s\right) \left[x \leftarrow t\right] = \left(\lambda z. \, s[y \leftarrow z] [x \leftarrow t]\right) & \text{if } x \neq y \\ \\ \text{and } z \notin FV(t) \cup FV(s) \end{array}$$

Slide 16

Substitution Example

$$\begin{array}{ll} (x \ (\lambda x. \ x) \ (\lambda y. \ z \ x))[x \leftarrow y] \\ \\ = \ (x[x \leftarrow y]) \ ((\lambda x. \ x)[x \leftarrow y]) \ ((\lambda y. \ z \ x)[x \leftarrow y]) \\ \\ = \ y \ (\lambda x. \ x) \ (\lambda y'. \ z \ y) \end{array}$$

Slide 17

α Conversion

Bound names are irrelevant:

 $\lambda x. \ x$ and $\lambda y. \ y$ denote the same function.

α conversion:

 $s =_{\alpha} t$ means s = t up to renaming of bound variables.

$$s =_{\alpha} t \quad \text{iff} \quad s \longrightarrow_{\alpha}^{*} t$$
 ($\longrightarrow_{\alpha}^{*} = \text{transitive, reflexive closure of } \longrightarrow_{\alpha} = \text{multiple steps}$)

Slide 18

α Conversion

Equality in Isabelle is equality modulo α conversion:

if $s =_{\alpha} t$ then s and t are syntactically equal.

Examples:

$$\begin{aligned} & x \left(\lambda x \ y. \ x \ y \right) \\ =_{\alpha} & x \left(\lambda y \ x. \ y \ x \right) \\ =_{\alpha} & x \left(\lambda z \ y. \ z \ y \right) \\ \neq_{\alpha} & z \left(\lambda z \ y. \ z \ y \right) \\ \neq_{\alpha} & x \left(\lambda x \ x. \ x \ x \right) \end{aligned}$$

Slide 19

Back to β

We have defined β reduction: \longrightarrow_{β}

Some notation and concepts:

- $\Rightarrow \beta$ conversion: s = t iff $\exists n. \ s \longrightarrow_{\beta}^* n \land t \longrightarrow_{\beta}^* n$
- \rightarrow t is **reducible** if there is an s such that $t \longrightarrow_{\beta} s$
- $igoplus (\lambda x.\ s)\ t$ is called a **redex** (reducible expression)
- → t is reducible iff it contains a redex
- \rightarrow if it is not reducible, t is in **normal form**

Does every λ term have a normal form?

No!

Example:

$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta}$$
$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta}$$
$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta} \dots$$

(but:
$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ (\lambda x. \ x \ x)) \longrightarrow_{\beta} \ \lambda y. \ y)$$

λ calculus is not terminating

Slide 21

β reduction is confluent

Confluence: $s \longrightarrow_{\beta}^* x \land s \longrightarrow_{\beta}^* y \Longrightarrow \exists t. \ x \longrightarrow_{\beta}^* t \land y \longrightarrow_{\beta}^* t$

Order of reduction does not matter for result Normal forms in λ calculus are unique

Slide 22

β reduction is confluent

Example:

$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ a) \longrightarrow_{\beta} (\lambda x \ y. \ y) \ (a \ a) \longrightarrow_{\beta} \lambda y. \ y$$
$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ a) \longrightarrow_{\beta} \lambda y. \ y$$

Slide 23

η Conversion

Another case of trivially equal functions: $t = (\lambda x. t x)$

Example:
$$(\lambda x. f x) (\lambda y. g y) \longrightarrow_{\eta} (\lambda x. f x) g \longrightarrow_{\eta} f g$$

- η reduction is confluent and terminating.
- \rightarrow $\longrightarrow_{\beta\eta}$ is confluent.
- $\longrightarrow_{\beta\eta}$ means \longrightarrow_{β} and \longrightarrow_{η} steps are both allowed. \Rightarrow Equality in Isabelle is also modulo η conversion.

In fact ...

Equality in Isabelle is modulo α , β , and η conversion.

We will see later why that is possible.

Slide 25

So, what can you do with λ calculus?

 λ calculus is very expressive, you can encode:

- → logic, set theory
- → turing machines, functional programs, etc.

Examples:

$$\begin{array}{ll} \text{true } \equiv \lambda x \, y. \, x & \text{if true } x \, y \longrightarrow_{\beta}^* x \\ & \text{false} \equiv \lambda x \, y. \, y & \text{if false } x \, y \longrightarrow_{\beta}^* y \\ & \text{if } \equiv \lambda z \, x \, y. \, z \, x \, y \end{array}$$

Now, not, and, or, etc is easy:

Slide 26

More Examples

Encoding natural numbers (Church Numerals)

```
\begin{array}{ll} 0 & \equiv \lambda f \ x. \ x \\ 1 & \equiv \lambda f \ x. \ f \ x \\ 2 & \equiv \lambda f \ x. \ f \ (f \ x) \\ 3 & \equiv \lambda f \ x. \ f \ (f \ (f \ x)) \\ & \cdots \\ & \text{Numeral } n \text{ takes arguments } f \text{ and } x, \text{ applies } f \ n\text{-times to } x. \end{array}
```

$$\begin{split} & \texttt{iszero} \equiv \lambda n. \ n \ (\lambda x. \ \texttt{false}) \ \texttt{true} \\ & \texttt{succ} \quad \equiv \lambda n \ f \ x. \ f \ (n \ f \ x) \\ & \texttt{add} \quad \equiv \lambda m \ n. \ \lambda f \ x. \ m \ f \ (n \ f \ x) \end{split}$$

Slide 27

Fix Points


```
(\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t \longrightarrow_{\beta}
(\lambda f. f ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) f)) t \longrightarrow_{\beta}
t ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t)
\mu = (\lambda x f. f (x x f)) (\lambda x f. f (x x f))
\mu t \longrightarrow_{\beta} t (\mu t) \longrightarrow_{\beta} t (t (\mu t)) \longrightarrow_{\beta} t (t (\mu t))) \longrightarrow_{\beta} \dots
(\lambda x f. f (x x f)) (\lambda x f. f (x x f)) \text{ is Turing's fix point operator}
```

Nice, but ...

As a mathematical foundation, λ does not work. It is inconsistent.

- → Frege (Predicate Logic, ~ 1879): allows arbitrary quantification over predicates
- → Russell (1901): Paradox $R \equiv \{X | X \notin X\}$
- → Whitehead & Russell (Principia Mathematica, 1910-1913): Fix the problem
- \rightarrow **Church** (1930): λ calculus as logic, true, false, \wedge , ... as λ terms

with $\{x \mid P \mid x\} \equiv \lambda x. P \mid x \qquad x \in M \equiv M \mid x$

Problem: you can write $R \equiv \lambda x$. not $(x \ x)$

and get $(R R) =_{\beta} \text{not } (R R)$

Slide 29

ISABELLE DEMO

Slide 30

We have learned so far...

- → λ calculus syntax
- → free variables, substitution
- $\rightarrow \beta$ reduction
- $\rightarrow \alpha$ and η conversion
- $\rightarrow \beta$ reduction is confluent
- → λ calculus is very expressive (turing complete)
- → λ calculus is inconsistent

Slide 31

Exercises

- → Reduce $(\lambda x.\ y\ (\lambda v.\ x\ v))\ (\lambda y.\ v\ y)$ to $\beta \eta$ normal form.
- → Find an encoding for function fs, sn, and pair such that fs $(pair\ a\ b) =_{\beta} a$ and sn $(pair\ a\ b) =_{\beta} b$.
- ightharpoonup (harder) Find an encoding of list objects, i.e. for the function cons and nil. Then find an encoding for map (that is, map $f[x_1,\ldots,x_n]=[fx_1,\ldots,fx_n]$), and for foldl (that is, foldl $fi[x_1,\ldots,x_n]=fx_1$ ($fi(x_2)$ ($fi(x_3)$ ($fi(x_n)$)))...))