
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

−→
Slide 1

Content

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction

• Datatypes, recursion, induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs

Slide 2

1

Last Time

➜ Isar, structured proofs

➜ shows, assumes

➜ the three modes of Isar

Slide 3

BACK TO TERM REWRITING ...

Slide 4

2



Applying a Rewrite Rule

➜ l −→ r applicable to term t[s]

if there is substitution σ such that σ l = s

➜ Result: t[σ r]

➜ Equationally: t[s] = t[σ r]

Example:

Rule: 0 + n −→ n

Term: a + (0 + (b + c))

Substitution: σ = {n 7→ b + c}

Result: a + (b + c)

Slide 5

Conditional Term Rewriting

Rewrite rules can be conditional:

[[P1 . . . Pn]] =⇒ l = r

is applicable to term t[s] with σ if

➜ σ l = s and

➜ σ P1, . . . , σ Pn are provable by rewriting.

Slide 6

3

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma ”f x = g x ∧ g x = f x =⇒ f x = 2¨

simp use and simplify assumptions

(simp (no asm)) ignore assumptions

(simp (no asm use)) simplify , but do not use assumptions

(simp (no asm simp)) use , but do not simplify assumptions

Slide 7

Preprocessing

Preprocessing (recursive) for maximal simplification power:

¬A 7→ A = False

A −→ B 7→ A =⇒ B

A ∧B 7→ A, B

∀x. A x 7→ A ?x

A 7→ A = True

Example: (p −→ q ∧ ¬r) ∧ s

7→

p =⇒ q = True r = False s = True

Slide 8

4



DEMO

Slide 9

Case splitting with simp

P (if A then s else t)
=

(A −→ P s) ∧ (¬A −→ P t)

Automatic

P (case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P a) ∧ (∀n. e = Suc n −→ P b)

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

Slide 10

5

Congruence Rules

congruence rules are about using context

Example : in P −→ Q we could use P to simplify terms in Q

For =⇒ hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example : [[P = P ′; P ′ =⇒ Q = Q′]] =⇒ (P −→ Q) = (P ′ −→ Q′)

Read: to simplify P −→ Q

➜ first simplify P to P ′

➜ then simplify Q to Q′ using P ′ as assumption

➜ the result is P ′
−→ Q′

Slide 11

More Congruence

Sometimes useful, but not used automatically (slowdown):
conj cong : [[P = P ′; P ′ =⇒ Q = Q′]] =⇒ (P ∧Q) = (P ′ ∧Q′)

Context for if-then-else:
if cong : [[b = c; c =⇒ x = u;¬c =⇒ y = v]] =⇒

(if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):
if weak cong : b = c =⇒ (if b then x else y) = (if c then x else y)

➜ declare own congruence rules with [cong] attribute

➜ delete with [cong del]

Slide 12

6



Ordered rewriting

Problem: x + y −→ y + x does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example: b + a ; a + b but not a + b ; b + a.

For types nat, int etc:

• lemmas add ac sort any sum (+)

• lemmas times ac sort any product (∗)

Example: apply (simp add: add ac) yields

(b + c) + a ; · · ·; a + (b + c)

Slide 13

AC Rules

Example for associative-commutative rules:

Associative : (x⊙ y)⊙ z = x⊙ (y ⊙ z)

Commutative : x⊙ y = y ⊙ x

These 2 rules alone get stuck too early (not confluent).

Example: (z ⊙ x) ⊙ (y ⊙ v)

We want: (z ⊙ x) ⊙ (y ⊙ v) = v ⊙ (x⊙ (y ⊙ z))

We get: (z ⊙ x) ⊙ (y ⊙ v) = v ⊙ (y ⊙ (x⊙ z))

We need: AC rule x⊙ (y ⊙ z) = y ⊙ (x⊙ z)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

Slide 14

7

DEMO

Slide 15

Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

Critical pairs:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

(3)+(2) {z 7→ y} b
(3)
←− f g t

(2)
−→ b

Slide 16

8



Completion

(1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

shows that a = b (because a
∗

←→ b), so we add a −→ b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

Slide 17

DEMO: WALDMEISTER

Slide 18

9

Orthogonal Rewriting Systems

Definitions:
A rule l −→ r is left-linear if no variable occurs twice in l.
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

Slide 19

We have learned today ...

➜ Conditional term rewriting

➜ Congruence rules

➜ AC rules

➜ More on confluence

Slide 20

10


