Oe

NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

—

Slide 1

Oe

Content

NICTA

Intro & motivation, getting started with Isabelle
Foundations & Principles
e Lambda Calculus
e Higher Order Logic, natural deduction
e Term rewriting
O Proof & Specification Techniques
e Inductively defined sets, rule induction
e Datatypes, recursion, induction
e Calculational reasoning, mathematics style proofs
e Hoare logic, proofs about programs

Slide 2

Oe

Last Time

NICTA

Introducing new Types

Equations and Term Rewriting

Confluence and Termination of reduction systems
Term Rewriting in Isabelle

Slide 3

Oe

Exercises

Oo0ooao

NICTA

use typedef to define a new type v with exactly one element.

define a constant u of type v

show that every element of v is equal to u

design a set of rules that turns formulae with A, Vv, —, =

into disjunctive normal form

(= disjunction of conjunctions with negation only directly on variables)
prove those rules in Isabelle

use simp only with these ruleson (-B — C) — A — B

Slide 4

Qe

Isar

NICTA

ISAR

A LANGUAGE FOR STRUCTURED PROOFS

Slide 5

Qe

NICTA

apply scripts What about..

O unreadable O Elegance?
O hardtomaintain O Explaining deeper insights?

O

O do not scale Large developments?

No structure. Isar!

Slide 6

Qe

A typical Isar proof
P . NICTA

proof
assume formulag

have formula, by simp

have formula, by blast
show formula,41 by ...

ged

proves formulay = formula,+1

(analogous to assumes /shows in lemma statements)

Slide 7

Qe

Isar core syntax
NICTA

proof = proof [method] statement* ged
| by method

method = (simp...) | (blast...) | (rule...) | ...

statement = fix variables (A)
| assume proposition =)
| [from name*] (have | show) proposition proof

| next (separates subgoals)

proposition = [name:] formula

Slide 8

proof and ged

proof [method] statement* ged

lemma "[A; B] = AAB"
proof (rule conjl)

assume A:"A”

from A show "A” by assumption
next

assume B:"B"

from B show "B” by assumption

ged
O proof (<method>) applies method to the stated goal
O proof applies a single rule that fits
O proof - does nothing to the goal
Slide 9

How do | know what to Assume and Show?

Look at the proof state!

lemma "[A; B] = AAB”
proof (rule conjl)

O proof (rule conjl) changes proof state to
1. [A4;B] = A
2.[A;Bl]= B
O so we need 2 shows: show "A” and show "B”
0 We are allowed to assume A,
because A is in the assumptions of the proof state.

Slide 10

Oe

NICTA

Oe

NICTA

Oe

The Three Modes of Isar

O [prove] :

NICTA

goal has been stated, proof needs to follow.

O [state]:

proof block has openend or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

O [chain] :

from statement has been made, goal statement needs to follow.

lemma "[A; B] = A A B" [prove]
proof (rule conjl) [state]
assume A:"A” [state]
from A [chain] show "A” [prove] by assumption [state]

next [state] ...

Have

Slide 11

Oe

Example:

NICTA

Can be used to make intermediate steps.

lemma "(z ::nat) +1=1+2"
proof -

have A: "z + 1 = Suc z” by simp

have B: "1 4+ x = Suc z” by simp

show "z +1 =1+ 2" by (simp only: A B)
ged

Slide 12

Oe

NICTA

DEMO: ISAR PROOFS

Slide 13

Oe

NICTA

BACK TO TERM REWRITING ...

Slide 14

Applying a Rewrite Rule

0 | — r applicable to term ¢[s]

if there is substitution o such thato [= s
0 Result: t[o r]
0 Equationally: ¢[s] = t[o r]

Example:

Rule: 0+n —n

Term: a+ (0+ (b+c¢))

Substitution: o = {n > b+c}

Result: a+ (b+c)

Slide 15

Conditional Term Rewriting

Rewrite rules can be conditional:

[P...P]=1l=r

is applicable to term t[s] with o if
O ol=sand

o P, are provable by rewriting.

Slide 16

Oe

NICTA

Oe

NICTA

Qe

Rewriting with Assumptions
NICTA

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma"frz=gzAhgax=fa= fa=2"
simp use and simplify assumptions
(simp (no_asm)) ignore assumptions

(simp (no_asm_use)) simplify , but do not use assumptions
(simp (no_.asm_simp)) use, but do not simplify assumptions

Slide 17

Qe

Preprocessing NICTA

Preprocessing (recursive) for maximal simplification power:

-A +— A= False
A—B — A=B
ANB — AB
Ve. Az +— Alx
A — A=True
Example: (p—qA-T)As
—

p=q="True r = False s =True

Slide 18

Qe

NICTA

DEMO

Slide 19

Qe

Case splitting with simp

NICTA
P (if Athen s elset)

(A—)Ps)/_(ﬁA*)Pt)

Automatic

P (caseeof 0 = a|Sucn = b)

(e=0— Pa)A(Vn.e=Sucn — Pb)

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

Slide 20

10

Congruence Rules

congruence rules are about using context

Example : in P — @ we could use P to simplify terms in Q
For = hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.
Example: [P=P;PP —=Q=Q]= (P —Q)=(P — Q')

Read: to simplify P — @
0O first simplify P to P’
0O then simplify Q to Q' using P’ as assumption
0 theresultis P" — Q'

Slide 21

More Congruence

Sometimes useful, but not used automatically (slowdown):
conjcong: [P=P;P = Q=Q]= (PANQ)=(P'ANQ")

Context for if-then-else:

ifcong: [b=cc=z=u-c=y=1v] =

(if b then z else y) = (if ¢ then u else v)

Prevent rewriting inside then-else (default):
if_weak_cong: b = ¢ = (if b then z else y) = (if ¢ then z else y)

O declare own congruence rules with [cong] attribute
O delete with [cong del]

Slide 22

11

e

NICTA

e

NICTA

Ordered rewriting

Problem: z 4 y — y + « does not terminate

Solution: use permutative rules only if term becomes
lexicographically smaller.

Example: b+a~»a-+bbutnota+b~b+a.

For types nat, int etc:
e lemmas add_ac sort any sum (+)

e lemmas times _ac sort any product (x)

Example: apply (simp add: add_ac) yields
(b+e)+a~-~a+(b+c)

Slide 23

AC Rules

Example for associative-commutative rules:
Associative : ey oz=20(y®2)
Commutative : z0y=y0Ouz

These 2 rules alone get stuck too early (not confluent).

Example: (z0z) 0 (y©v)
Wewant: (z0z)0yov)=v0 @06 (Yo z2)
We get: (202)0YoV)=v0 (YO (z2))

Weneed: ACrule z0(y0z)=y0o(z0z2)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

Slide 24

12

e

NICTA

e

NICTA

Qe

NICTA

DEMO

Slide 25

Qe

NICTA

Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping |hs of rules.

Definition:
Letl; — r; and lo — ro be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of /; unifies with 5.

Example:

Rules: (1) fz—a ()gy—b @) f(g92)—b
Critical pairs:

(1)+(3) {z gz} a &L fgt By

@+2) (2o y) b & par By

Slide 26

13

Completion

Wfr—a @gy—b @)f(gz) —b

is not confluent
But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {z gz} a &l fgt By,

shows that a = b (because a «— b), so we add « — b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

Slide 27

DEMO: WALDMEISTER

Slide 28

14

Qe

NICTA

Qe

NICTA

We have learned today ...

OoooQgog

Isar

Conditional term rewriting
Congruence rules

AC rules

More on confluence

Slide 29

15

Qe

NICTA

