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Types and Terms in Isabelle

Types: τ ::= b | ′ν | ′ν :: C | τ ⇒ τ | (τ, . . . , τ) K

b ∈ {bool,int, . . .} base types
ν ∈ {α, β, . . .} type variables
K ∈ {set,list, . . .} type constructors
C ∈ {order,linord, . . .} type classes

Terms: t ::= v | c | ?v | (t t) | (λx. t)

v, x ∈ V, c ∈ C, V, C sets of names

2



Types and Terms in Isabelle

Types: τ ::= b | ′ν | ′ν :: C | τ ⇒ τ | (τ, . . . , τ) K

b ∈ {bool,int, . . .} base types
ν ∈ {α, β, . . .} type variables
K ∈ {set,list, . . .} type constructors
C ∈ {order,linord, . . .} type classes

Terms: t ::= v | c | ?v | (t t) | (λx. t)

v, x ∈ V, c ∈ C, V, C sets of names

➜ type constructors : construct a new type out of a parameter type.
Example: int list

2-a



Types and Terms in Isabelle

Types: τ ::= b | ′ν | ′ν :: C | τ ⇒ τ | (τ, . . . , τ) K

b ∈ {bool,int, . . .} base types
ν ∈ {α, β, . . .} type variables
K ∈ {set,list, . . .} type constructors
C ∈ {order,linord, . . .} type classes

Terms: t ::= v | c | ?v | (t t) | (λx. t)

v, x ∈ V, c ∈ C, V, C sets of names

➜ type constructors : construct a new type out of a parameter type.
Example: int list

➜ type classes : restrict type variables to a class defined by axioms.
Example: α :: order

2-b



Types and Terms in Isabelle

Types: τ ::= b | ′ν | ′ν :: C | τ ⇒ τ | (τ, . . . , τ) K

b ∈ {bool,int, . . .} base types
ν ∈ {α, β, . . .} type variables
K ∈ {set,list, . . .} type constructors
C ∈ {order,linord, . . .} type classes

Terms: t ::= v | c | ?v | (t t) | (λx. t)

v, x ∈ V, c ∈ C, V, C sets of names

➜ type constructors : construct a new type out of a parameter type.
Example: int list

➜ type classes : restrict type variables to a class defined by axioms.
Example: α :: order

➜ schematic variables : variables that can be instantiated.
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Type Classes

➜ similar to Haskell’s type classes, but with semantic properties

axclass order < ord

order refl: ”x ≤ x”

order trans: ”[[x ≤ y; y ≤ z]] =⇒ x ≤ z”

. . .
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. . .

➜ theorems can be proved in the abstract

lemma order less trans: ”
∧
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Type Classes

➜ similar to Haskell’s type classes, but with semantic properties

axclass order < ord

order refl: ”x ≤ x”

order trans: ”[[x ≤ y; y ≤ z]] =⇒ x ≤ z”

. . .

➜ theorems can be proved in the abstract

lemma order less trans: ”
∧

x ::′a :: order. [[x < y; y < z]] =⇒ x < z”

➜ can be used for subtyping

axclass linorder < order
linorder linear: ”x ≤ y ∨ y ≤ x”

➜ can be instantiated

instance nat :: ”{order, linorder}” by . . .
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Schematic Variables

X Y
X ∧ Y

➜ X and Y must be instantiated to apply the rule
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Schematic Variables

X Y
X ∧ Y

➜ X and Y must be instantiated to apply the rule

But: lemma “x+ 0 = 0 + x”

➜ x is free

➜ convention: lemma must be true for all x

➜ during the proof , x must not be instantiated
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Schematic Variables

X Y
X ∧ Y

➜ X and Y must be instantiated to apply the rule

But: lemma “x+ 0 = 0 + x”

➜ x is free

➜ convention: lemma must be true for all x

➜ during the proof , x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.
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Higher Order Unification

Unification:
Find substitution σ on variables for terms s, t such that σ(s) = σ(t)
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Higher Order Unification

Unification:
Find substitution σ on variables for terms s, t such that σ(s) = σ(t)

In Isabelle:
Find substitution σ on schematic variables such that σ(s) =αβη σ(t)

Examples:

?X∧?Y =αβη x ∧ x

?P x =αβη x ∧ x

P (?f x) =αβη ?Y x
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Higher Order Unification

Unification:
Find substitution σ on variables for terms s, t such that σ(s) = σ(t)

In Isabelle:
Find substitution σ on schematic variables such that σ(s) =αβη σ(t)

Examples:

?X∧?Y =αβη x ∧ x [?X ← x, ?Y ← x]

?P x =αβη x ∧ x [?P ← λx. x ∧ x]

P (?f x) =αβη ?Y x [?f ← λx. x, ?Y ← P ]

Higher Order: schematic variables can be functions.
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Higher Order Unification

➜ Unification modulo αβ (Higher Order Unification) is semi-decidable
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Higher Order Unification

➜ Unification modulo αβ (Higher Order Unification) is semi-decidable

➜ Unification modulo αβη is undecidable

➜ Higher Order Unification has possibly infinitely many solutions

But:

➜ Most cases are well-behaved

➜ Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

➜ is a term in β normal form where

➜ each occurrence of a schematic variable is of the from ?f t1 . . . tn

➜ and the t1 . . . tn are η-convertible into n distinct bound variables
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We have learned so far...

➜ Simply typed lambda calculus: λ→
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We have learned so far...

➜ Simply typed lambda calculus: λ→

➜ Typing rules for λ→, type variables, type contexts

➜ β-reduction in λ→ satisfies subject reduction

➜ β-reduction in λ→ always terminates

➜ Types and terms in Isabelle

7-d



PREVIEW: PROOFS IN ISABELLE
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Proofs in Isabelle

General schema:

lemma name: ”<goal>”
apply <method>
apply <method>
. . .

done
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Proofs in Isabelle

General schema:

lemma name: ”<goal>”
apply <method>
apply <method>
. . .

done

➜ Sequential application of methods until
all subgoals are solved.
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The Proof State

1.
∧
x1 . . . xp.[[A1; . . . ;An]] =⇒ B

2.
∧
y1 . . . yq.[[C1; . . . ;Cm]] =⇒ D
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The Proof State

1.
∧
x1 . . . xp.[[A1; . . . ;An]] =⇒ B

2.
∧
y1 . . . yq.[[C1; . . . ;Cm]] =⇒ D

x1 . . . xp Parameters

A1 . . . An Local assumptions

B Actual (sub)goal
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Isabelle Theories

Syntax:

theory MyTh

imports ImpTh
1

. . . ImpThn

begin

(declarations, definitions, theorems, proofs, ...)∗

end

➜ MyTh: name of theory. Must live in file MyTh.thy

➜ ImpTh
i
: name of imported theories. Import transitive.
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Isabelle Theories

Syntax:

theory MyTh

imports ImpTh
1

. . . ImpThn

begin

(declarations, definitions, theorems, proofs, ...)∗

end

➜ MyTh: name of theory. Must live in file MyTh.thy

➜ ImpTh
i
: name of imported theories. Import transitive.

Unless you need something special:

theory MyTh imports Main begin . . . end
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Natural Deduction Rules

A ∧ B
conjI

A ∧B

C
conjE

A ∨ B A ∨B
disjI1/2 A ∨B

C
disjE

A −→ B
impI A −→ B

C
impE

For each connective (∧,∨, etc):
introduction and elemination rules
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Natural Deduction Rules

A B
A ∧ B

conjI
A ∧B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨B

disjI1/2 A ∨B
C

disjE

A −→ B
impI A −→ B

C
impE

For each connective (∧,∨, etc):
introduction and elemination rules
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Natural Deduction Rules

A B
A ∧ B

conjI
A ∧B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨B

disjI1/2 A ∨B A =⇒ C B =⇒ C
C

disjE
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C
impE

For each connective (∧,∨, etc):
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Natural Deduction Rules

A B
A ∧ B

conjI
A ∧B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨B

disjI1/2 A ∨B A =⇒ C B =⇒ C
C

disjE
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Natural Deduction Rules

A B
A ∧ B

conjI
A ∧B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨B

disjI1/2 A ∨B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI A −→ B A B =⇒ C
C

impE

For each connective (∧,∨, etc):
introduction and elemination rules
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Proof by assumption

apply assumption

proves

1. [[B1; . . . ;Bm]] =⇒ C

by unifying C with one of the Bi
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Proof by assumption

apply assumption

proves

1. [[B1; . . . ;Bm]] =⇒ C

by unifying C with one of the Bi

There may be more than one matching Bi and multiple unifiers.

Backtracking!

Explicit backtracking command: back
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Intro rules

Intro rules decompose formulae to the right of =⇒.

apply (rule <intro-rule>)
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Intro rules

Intro rules decompose formulae to the right of =⇒.

apply (rule <intro-rule>)

Intro rule [[A1; . . . ;An]] =⇒ A means

➜ To prove A it suffices to show A1 . . . An
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Intro rules

Intro rules decompose formulae to the right of =⇒.

apply (rule <intro-rule>)

Intro rule [[A1; . . . ;An]] =⇒ A means

➜ To prove A it suffices to show A1 . . . An

Applying rule [[A1; . . . ;An]] =⇒ A to subgoal C:

➜ unify A and C

➜ replace C with n new subgoals A1 . . . An
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Elim rules

Elim rules decompose formulae on the left of =⇒.

apply (erule <elim-rule>)
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Elim rules

Elim rules decompose formulae on the left of =⇒.

apply (erule <elim-rule>)

Elim rule [[A1; . . . ;An]] =⇒ A means

➜ If I know A1 and want to prove A it suffices to show A2 . . . An
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Elim rules

Elim rules decompose formulae on the left of =⇒.

apply (erule <elim-rule>)

Elim rule [[A1; . . . ;An]] =⇒ A means

➜ If I know A1 and want to prove A it suffices to show A2 . . . An

Applying rule [[A1; . . . ;An]] =⇒ A to subgoal C:
Like rule but also

➜ unifies first premise of rule with an assumption

➜ eliminates that assumption
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DEMO
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MORE PROOF RULES
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Iff, Negation, True and False

A = B
iffI

A = B

C
iffE

A = B
iffD1

A = B
iffD2

¬A
notI

¬A
P

notE
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Iff, Negation, True and False

A =⇒ B B =⇒ A
A = B

iffI
A = B

C
iffE

A = B
iffD1

A = B
iffD2

¬A
notI

¬A
P

notE
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Iff, Negation, True and False

A =⇒ B B =⇒ A
A = B

iffI
A = B [[A −→ B;B −→ A]] =⇒ C

C
iffE

A = B
iffD1

A = B
iffD2

¬A
notI

¬A
P

notE
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Iff, Negation, True and False

A =⇒ B B =⇒ A
A = B

iffI
A = B [[A −→ B;B −→ A]] =⇒ C

C
iffE

A = B
A =⇒ B

iffD1
A = B
B =⇒ A

iffD2

¬A
notI

¬A
P

notE
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Iff, Negation, True and False

A =⇒ B B =⇒ A
A = B

iffI
A = B [[A −→ B;B −→ A]] =⇒ C

C
iffE

A = B
A =⇒ B

iffD1
A = B
B =⇒ A

iffD2

A =⇒ False
¬A

notI
¬A

P
notE
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Iff, Negation, True and False

A =⇒ B B =⇒ A
A = B

iffI
A = B [[A −→ B;B −→ A]] =⇒ C

C
iffE

A = B
A =⇒ B

iffD1
A = B
B =⇒ A

iffD2

A =⇒ False
¬A

notI
¬A A

P
notE
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Iff, Negation, True and False

A =⇒ B B =⇒ A
A = B

iffI
A = B [[A −→ B;B −→ A]] =⇒ C

C
iffE

A = B
A =⇒ B

iffD1
A = B
B =⇒ A

iffD2

A =⇒ False
¬A

notI
¬A A

P
notE

True TrueI False
P

FalseE
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Equality

t = t refl
s = t
t = s

sym r = s s = t
r = t

trans
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Equality

t = t refl
s = t
t = s

sym r = s s = t
r = t

trans

s = t P s
P t

subst
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Equality

t = t refl
s = t
t = s

sym r = s s = t
r = t

trans

s = t P s
P t

subst

Rarely needed explicitly — used implicitly by term rewriting
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Classical

P = True ∨ P = False
True-False
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Classical

P = True ∨ P = False
True-False

P ∨ ¬P
excluded-middle

¬A =⇒ False
A

ccontr ¬A =⇒ A
A

classical
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Classical

P = True ∨ P = False
True-False

P ∨ ¬P
excluded-middle

¬A =⇒ False
A

ccontr ¬A =⇒ A
A

classical

➜ excluded-middle , ccontr and classical
not derivable from the other rules.
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Classical

P = True ∨ P = False
True-False

P ∨ ¬P
excluded-middle

¬A =⇒ False
A

ccontr ¬A =⇒ A
A

classical

➜ excluded-middle , ccontr and classical
not derivable from the other rules.

➜ if we include True-False, they are derivable

They make the logic “classical”, “non-constructive”
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Cases

P ∨ ¬P
excluded-middle

is a case distinction on type bool
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Cases

P ∨ ¬P
excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case tac term)
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Safe and not so safe

Safe rules preserve provability
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Safe and not so safe

Safe rules preserve provability

conjI, impI, notI, iffi, refl, ccontr, classical, conjE, disjE

A B
A ∧B

conjI
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Safe and not so safe

Safe rules preserve provability

conjI, impI, notI, iffi, refl, ccontr, classical, conjE, disjE

A B
A ∧B

conjI

Unsafe rules can turn a provable goal into an unprovable one

22-b



Safe and not so safe

Safe rules preserve provability

conjI, impI, notI, iffi, refl, ccontr, classical, conjE, disjE

A B
A ∧B

conjI

Unsafe rules can turn a provable goal into an unprovable one

disjI1, disjI2, impE, iffD1, iffD2, notE

A
A ∨B

disjI1
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Safe and not so safe

Safe rules preserve provability

conjI, impI, notI, iffi, refl, ccontr, classical, conjE, disjE

A B
A ∧B

conjI

Unsafe rules can turn a provable goal into an unprovable one

disjI1, disjI2, impE, iffD1, iffD2, notE

A
A ∨B

disjI1

Apply safe rules before unsafe ones

22-d


