NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

)\%and HOL

Types and Terms in Isabelle

NICTA

Types: 7 == b | v | vaC | 17T=71](r,....7T) K
b € {bool ,int,...} base types
v €{a,p,...} type variables
K € {set,list,...} type constructors
C € {order,linord,...} type classes

Terms: t == v | c| 7v | (tt) | (Ax. t)
v,x €V, ceC, V C setsofnames

Types and Terms in Isabelle

Types: 7 == b | v | vaC | 17T=71](r,....7T) K
b € {bool ,int,...} base types
v €{a,p,...} type variables
K € {set,list,...} type constructors
C € {order,linord,...} type classes

Terms: t == v | c| 7v | (tt) | (Ax. t)
v,x €V, ceC, V C setsofnames

[0 type constructors : construct a new type out of a parameter type.

Example:int |i st

2-a

NICTA

Types and Terms in Isabelle

Types: 7 == b | v | vaC | 17T=71](r,....7T) K
b € {bool ,int,...} base types
v €{a,p,...} type variables
K € {set,list,...} type constructors
C € {order,linord,...} type classes

Terms: t == v | c| 7v | (tt) | (Ax. t)
v,x €V, ceC, V C setsofnames

[0 type constructors : construct a new type out of a parameter type.

Example:int |i st

[type classes : restrict type variables to a class defined by axioms.

Example: « :: order

2-b

NICTA

Types and Terms in Isabelle

Types: 7 == b | v | vaC | 17T=71](r,....7T) K
b € {bool ,int,...} base types
v €{a,p,...} type variables
K € {set,list,...} type constructors
C € {order,linord,...} type classes

Terms: t == v | c| 7v | (tt) | (Ax. t)
v,x €V, ceC, V C setsofnames

[0 type constructors : construct a new type out of a parameter type.

Example:int |i st

[type classes : restrict type variables to a class defined by axioms.

Example: « :: order
[1 schematic variables : variables that can be instantiated.

2-C

NICTA

Type Classes

NICTA

[1 similar to Haskell's type classes, but with semantic properties

axclass order < ord
order_refl: 72 < x”
order_trans: "z < y;y < z] = x < 27

Type Classes

[1 similar to Haskell's type classes, but with semantic properties

axclass order < ord
order_refl: 72 < x”
order_trans: "z < y;y < z] = x < 27

[1 theorems can be proved in the abstract

lemma order_less_trans: ” Az :'a :: order. [x < y;y < 2] =z < 27

3-a

NICTA

Type Classes

NICTA

[1 similar to Haskell's type classes, but with semantic properties

axclass order < ord
order_refl: 72 < x”
order_trans: "z < y;y < z] = x < 27

[1 theorems can be proved in the abstract

lemma order_less_trans: ” Az :'a :: order. [x < y;y < 2] =z < 27
[1 can be used for subtyping

axclass linorder < order
linorder_linear: "z <y VvVy < x”

3-b

Type Classes

NICTA

[1 similar to Haskell's type classes, but with semantic properties

axclass order < ord
order_refl: 72 < x”
order_trans: "z < y;y < z] = x < 27

[1 theorems can be proved in the abstract

lemma order_less_trans: ” Az :'a :: order. [x < y;y < 2] =z < 27
[1 can be used for subtyping

axclass linorder < order
linorder_linear: "z <y VvVy < x”

can be instantiated

instance nat :: ”{order, linorder}” by ...

3-C

Schematic Variables

NICTA

X Y
XAY
[0 X and Y must be instantiated to apply the rule

Schematic Variables

]

X Y
XAY
X and Y must be instantiated to apply the rule

But: lemma “z+0=0+4+2"

z IS free
convention: lemma must be true for all =
during the proof , x must not be instantiated

4-a

NICTA

Schematic Variables

]

X Y
XAY
X and Y must be instantiated to apply the rule

But: lemma “z+0=0+4+2"

z IS free
convention: lemma must be true for all =
during the proof , x must not be instantiated

Solution:

Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

4-b

NICTA

Higher Order Unification

NICTA

Unification:
Find substitution o on variables for terms s, t such that o(s) = o(t)

Higher Order Unification

NICTA

Unification:
Find substitution o on variables for terms s, t such that o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that o(s) =43, o(?)

5-a

Higher Order Unification

NICTA

Unification:
Find substitution o on variables for terms s, t such that o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that o(s) =43, o(?)

Examples:
TXNY =ap TAT
"Px —afn TANAT
P(?fz) =y ?Yx

5-b

Higher Order Unification

Unification:

Find substitution o on variables for terms s, t such that o(s) = o(t)

In Isabelle:

Find substitution o on schematic variables such that o(s) =43, o(?)

Examples:
TXNYY =afBn

TP x —afn
P (?fz) =apy

VAN

xN\Nx

Y x

7X 2,7 + x|

7P+ \x. x N\ x|

7f « Ax. 2,7V « P]

Higher Order. schematic variables can be functions.

5-c

NICTA

Higher Order Unification

NICTA

[1 Unification modulo a8 (Higher Order Unification) is semi-decidable

Higher Order Unification

NICTA

[1 Unification modulo a8 (Higher Order Unification) is semi-decidable
[Unification modulo a8n is undecidable

6-a

Higher Order Unification

NICTA

[1 Unification modulo a8 (Higher Order Unification) is semi-decidable
[Unification modulo a8n is undecidable
[1 Higher Order Unification has possibly infinitely many solutions

6-b

Higher Order Unification

NICTA

[1 Unification modulo a8 (Higher Order Unification) is semi-decidable
[Unification modulo a8n is undecidable
[1 Higher Order Unification has possibly infinitely many solutions

But:

[1 Most cases are well-behaved

6-C

Higher Order Unification

NICTA

[1 Unification modulo a8 (Higher Order Unification) is semi-decidable
[Unification modulo a8n is undecidable
[1 Higher Order Unification has possibly infinitely many solutions

But:

[Most cases are well-behaved
[1 Important fragments (like Higher Order Patterns) are decidable

6-d

Higher Order Unification

[1 Unification modulo a8 (Higher Order Unification) is semi-decidable
[Unification modulo a8n is undecidable
[1 Higher Order Unification has possibly infinitely many solutions

But:

[Most cases are well-behaved
[1 Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:
1 is aterm in 8 normal form where
[1 each occurrence of a schematic variable is of the from ?f t; ... t,
[J andthet; ... t, are n-convertible into n distinct bound variables

6-e

NICTA

We have learned so far...

NICTA

[0 Simply typed lambda calculus: \™

We have learned so far...

NICTA

[0 Simply typed lambda calculus: \™
[0 Typing rules for A\, type variables, type contexts

7-a

We have learned so far...

NICTA

[0 Simply typed lambda calculus: \™
[0 Typing rules for A\, type variables, type contexts
[0 B-reduction in A~ satisfies subject reduction

7-b

We have learned so far...

Simply typed lambda calculus: A™

[]
[0 Typing rules for A\, type variables, type contexts
[0 B-reduction in A~ satisfies subject reduction

[]

B-reduction in A~ always terminates

7-C

NICTA

We have learned so far...

N I N IO B

Simply typed lambda calculus: A™

Typing rules for A7, type variables, type contexts
B-reduction in A~ satisfies subject reduction
B-reduction in A~ always terminates

Types and terms in Isabelle

7-d

NICTA

NICTA

PREVIEW. PROOFS IN ISABELLE

Proofs in Isabelle

General schema:

lemma name: "<goal>"
apply <method>
apply <method>

done

NICTA

Proofs in Isabelle

NICTA
General schema:
lemma name: "<goal>"

apply <method>
apply <method>

done

0 Seguential application of methods until
all subgoals are solved.

9-a

The Proof State

NICTA

1. A%l...fp.[[Al;...;An]] — B
2. Ny1...yq-[C1;...;Cp] = D

10

The Proof State

NICTA

1. /\inl...iljp.[[Al;...;An]] — B
2. Ny1...yq-[C1;...;Cp] = D

x1...T, Parameters
A;... A, Local assumptions

B Actual (sub)goal

10-a

Isabelle Theories

NICTA

Syntax:

t heory MyTh

| nports ImpTh, ...ImpTh,

begi n

(declarations, definitions, theorems, proofs, ...)*

end

[0 MyTh: name of theory. Must live in file MyTh. t hy
[0 ImpTh,;: name of imported theories. Import transitive.

11

Isabelle Theories

NICTA

Syntax:

t heory MyTh

| nports ImpTh, ...ImpTh,

begi n

(declarations, definitions, theorems, proofs, ...)*

end

[0 MyTh: name of theory. Must live in file MyTh. t hy
[0 ImpTh,;: name of imported theories. Import transitive.

Unless you need something special:

t heory MyTh inmports Main begin ... end

11-a

Natural Deduction Rules

NICTA
| ANB =
NG con| C con|
.. AV B ..
AVE AVE disjl1/2 c disjE
: A— B :
Y B Impl C ImpE

For each connective (A, V, etc):
Introduction and elemination rules

12

Natural Deduction Rules

NICTA
ﬁ/\g conjl AND C conjE
5 o disill2 AV B ~ disjE
17 impl A— B C ImpE

For each connective (A, V, etc):
Introduction and elemination rules

12-a

Natural Deduction Rules

NICTA
ﬁ/\g conjl AND [[f(l;B]] —C conjE
5 o disill2 AV B ~ disjE
17 impl A— B C ImpE

For each connective (A, V, etc):
Introduction and elemination rules

12-b

Natural Deduction Rules

NICTA
ﬁ/\g conjl AND [[ii Bl=¢ conjE
AéB AIjB disjine AV DB ~ disjE
17 impl A— B C ImpE

For each connective (A, V, etc):
Introduction and elemination rules

12-c

Natural Deduction Rules

NICTA
ﬁ/\g conjl AND [[f(l;B]] —C conjE
A L disjuz AVEA=C D=0 gigie
17 impl A— B C ImpE

For each connective (A, V, etc):
Introduction and elemination rules

12-d

Natural Deduction Rules

NICTA
ﬁ/\g conjl AND [[f(l;B]] —C conjE
A L disjuz AVEA=C D=0 gigie
ﬁjgimpl A— B C ImpE

For each connective (A, V, etc):
Introduction and elemination rules

12-e

Natural Deduction Rules

NICTA
ﬁ/\g conjl AND [[f(l;B]] —C conjE
A L disjuz AVEA=C D=0 gigie
ﬁjgimpl A— B ’é B:>CimpE

For each connective (A, V, etc):
Introduction and elemination rules

12-f

Proof by assumption

NICTA

apply assumption
proves
1. [By;...;Bp] = C

by unifying C' with one of the B;

13

Proof by assumption

NICTA

apply assumption
proves
1. [By;...;Bp] = C
by unifying C' with one of the B;

There may be more than one matching B; and multiple unifiers.

Backtracking!

Explicit backtracking command: back

13-a

Intro rules

NICTA

Intro rules decompose formulae to the right of =-.

apply (rule <intro-rule>)

14

Intro rules

NICTA

Intro rules decompose formulae to the right of =-.

apply (rule <intro-rule>)

Intro rule [A;;...; A,] = A means
[1 To prove A it suffices to show A; ... A,

14-a

Intro rules

Intro rules decompose formulae to the right of =-.

apply (rule <intro-rule>)

Intro rule [A;;...; A,] = A means
[1 To prove A it suffices to show A; ... A,

Applying rule [A;;...;A,] = A to subgoal C:
(1 unify Aand C
[1 replace C with n new subgoals A; ... A,

14-b

NICTA

Elim rules

NICTA

Elim rules decompose formulae on the left of —-.

apply (erule <elim-rule>)

15

Elim rules

NICTA

Elim rules decompose formulae on the left of —-.

apply (erule <elim-rule>)

Elimrule [A;...;A,] = A means
[1 If I know A; and want to prove A it suffices to show A, ... A,

15-a

Elim rules

Elim rules decompose formulae on the left of —-.

apply (erule <elim-rule>)

Elimrule [A;;...;A,] = A means
[1 If I know A; and want to prove A it suffices to show A, ... A,

Applying rule [A;;...;A,] = A to subgoal C:
Like rule but also

[unifies first premise of rule with an assumption
[1 eliminates that assumption

15-b

NICTA

NICTA

DEMO

16

NICTA

MORE PROOF RULES

17

Iff, Negation, True and False

NICTA

A=1HB

Iffl IffE

IffD1 IffD2

) notl

18

Iff, Negation, True and False

NICTA
A=—B B=— A A=B .
A1— B Iffl O IffE
A=B 451 A=B ino
—A
) notl P notke

18-a

Iff, Negation, True and False

A=—B B=— A A=B

A1— B Iffl

18-b

(e

Iff, Negation, True and False

NICTA
A=— B B=— A . A=B |[A— B;B— Al =C |
A1— B Iffl O IffE
=B . =B .
41— B IffD1 B— A IiffD2
— notE

) notl

18-c

(e

Iff, Negation, True and False

NICTA
A=— B B=— A . A=B |[A— B;B— Al =C |
A1— B Iffl O IffE
=B . =B .
41— B IffD1 B— A IiffD2
A = False ol —A NOtE

—-A P

18-d

(e

Iff, Negation, True and False

NICTA
A=— B B=— A . A=B |[A— B;B— Al =C |
A1— B Iffl O IffE
=B . =B .
41— B IffD1 B— A IiffD2
A = False ol —A NOtE

—-A P

18-e

Iff, Negation, True and False
NICTA

A=B [A— B;B— Al =C

A=— B B:>A.fﬂ
A=RB | C
A=DB . A=DB .
41— B IffD1 B— A IiffD2

A =— False -A A
A notl P notke

False FalseE

Trie Truel P

18-f

Equality

— refl

sym

19

Equality

NICTA

s=1 r=s8 s=1¢1
sSvym
T y trans

ra— refl

s=t Ps
Pt

subst

19-a

Equality

NICTA

=1 trans

sym

—t:treﬂ Pa—

s=t Ps
Pt

subst

Rarely needed explicitly — used implicitly by term rewriting

19-b

Classical

NICTA

P =TrueV P = False True-False

20

Classical

NICTA

P=TrueV P = False True-False

IV = excluded-middle

A= False oony A== A gaggical

20-a

Classical

NICTA

P =TrueV P = False True-False

Py op excluded-middle

A= False oony A== A gaggical

[1 excluded-middle , ccontr and classical
not derivable from the other rules.

20-b

Classical

NICTA

P =TrueV P = False True-False

Dy op excluded-middle

A= False oony A== A gaggical

[1 excluded-middle , ccontr and classical
not derivable from the other rules.

I if we include True-False, they are derivable

They make the logic “classical’, “non-constructive”

20-c

Cases

NICTA

Py op excluded-middle

IS a case distinction on type bool

21

Cases

NICTA

Py op excluded-middle

IS a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case_tac term)

21-a

Safe and not so safe

NICTA

Safe rules preserve provability

22

Safe and not so safe

NICTA

Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

A B
ANB

conjl

22-a

Safe and not so safe

NICTA

Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

A B
ANB

conjl

Unsafe rules can turn a provable goal into an unprovable one

22-b

Safe and not so safe

NICTA

Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

A B
ANB

conjl

Unsafe rules can turn a provable goal into an unprovable one

disjl1, disjl2, impE, iffD1, iffD2, notE
A ..
14\/—B d|SJ|1

22-C

Safe and not so safe

NICTA

Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

A B
ANB

conjl

Unsafe rules can turn a provable goal into an unprovable one

disjl1, disjl2, impE, iffD1, iffD2, notE

A ..
14\/—B d|SJ|1

Apply safe rules before unsafe ones

22-d

