Oe

NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

Slide 1

Oe

Content

NICTA

O Intro & motivation, getting started with Isabelle

O Foundations & Principles

Lambda Calculus
Higher Order Logic, natural deduction

e Term rewriting
O Proof & Specification Techniques

Inductively defined sets, rule induction
Datatypes, recursion, induction

More recursion, Calculational reasoning
Hoare logic, proofs about programs
Locales, Presentation

Slide 2

Oe

Last Time

O
O
O

NICTA
Calculations: alsoffinally

[trans]-rules
Code generation

Slide 3

Oe

Finding Theorems

NICTA

Command find _theorems (C-c C-f) finds combinations of:

0

O ooo

pattern: " _+ _+ "

lhs of simp rules: simp: * _* (_+)"
intro/elim/dest on current goal
lemma name: name: assoc
exclusions thereof: -name: "HOL."

Example:

fin
0
0
0

find _theorems dest -"hd” name: "List.”

ds all theorems in the current context that
match the goal as dest rule,
do not contain the constant "hd”
are in the List theory (name starts with "List.")

Slide 4

Oe

NICTA

Isar: define and defines

Can define local constant in Isar proof context:

proof

.d.e.fine "f = big term”
have "g=fx"...

like definition, not automatically unfolded (f_def)
different to let ?f = "big term”

Also available in lemma statement:

lemma ...
fixes ...
assumes ...
defines ...
shows ...

Slide 5

Oe

NICTA

A CRASH COURSE IN SEMANTICS

Slide 6

Oe

IMP - a small Imperative Language

NICTA

Commands:
datatype com = SKIP

| Assign loc aexp (L=

| Semi com com (52

| Cond bexp com com (IF _THEN _ELSE)

| While bexp com (WHILE _DO _OD)
types loc = string
types state = loc = nat
types aexp = state = nat
types bexp = state = bool

Slide 7
e
Example Program
NICTA
Usual syntax:
B:=1;
WHILE A # 0 DO
B:= Bx A;
A=A-1

oD

Expressions are functions from state to bool or nat:
B = (Ao.1);
WHILE (Ao. ¢ A # 0) DO
B:= (Ao.o Bxo A);
A:=(\o.oc A—1)
oD

Slide 8

e

NICTA

What does it do?

So far we have defined:

0O Syntax of commands and expressions
O State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

O A wide field of its own
O Some choices:

e Operational (inductive relations, big step, small step)
e Denotational (programs as functions on states, state transformers)
e Axiomatic (pre-/post conditions, Hoare logic)

Slide 9

e

Structural Operational Semantics
NICTA

(SKIP,0) — &

eoc=v
(x :=e,0) — oz > v]

(c1,0) — " (ca,0") — 0"

(c1;¢2,0) —> 0"

bo=True (c1,0) — 0’
(IF b THEN ¢; ELSE c3,0) — o

bo = False (cy,0) — o’
(IF b THEN ¢; ELSE ¢5,0) — o’

Slide 10

e

Structural Operational Semantics

NICTA

bo = False
(WHILE b DO ¢ OD,0) — o

bo=True (¢,0) — o’ (WHILEbDO ¢OD,o’) — o”
(WHILE b DO ¢ OD, o) — ¢”

Slide 11

e

NICTA

DEMO: THE DEFINITIONS IN ISABELLE

Slide 12

Qe

Proofs about Programs
NICTA

Now we know:

0 What programs are: Syntax
O On what they work: State
O How they work: Semantics

So we can prove properties about programs

Example:
Show that example program from slide 8 implements the factorial.

lemma (factorial, o) — 0/ = ¢’B = fac (c A)

(where fac0 =0, fac (Sucn)= (Sucn)*facn)

Slide 13

Qe

NICTA

DEMO: EXAMPLE PROOF

Slide 14

Qe

Too tedious
NICTA
Induction needed for each loop
Is there something easier?
Slide 15
e
Floyd/Hoare

NICTA

Idea: describe meaning of program by pre/post conditions

Examples:

{True} z:=2 {z=2}

{y=2} z:=21xy {x=42}

{z=n} IFy<OTHENz:=2+yELSExz:=x—y {z=n—|y}

{A=n} factorial {B=facn}

Proofs: have rules that directly work on such triples

Slide 16

e

NICTA

Meaning of a Hoare-Triple

Py ¢ {Q}
What are the assertions P and Q7?
0 Here: again functions from state to bool

(shallow embedding of assertions)
O Other choice: syntax and semantics for assertions (deep embedding)
What does {P} ¢ {Q} mean?

Partial Correctness:

E{P}c{Q} = Moo .PoA(co)—d = Q0)
Total Correctness:
E{P}c{Q} = (No.Po= 30’ (c,0) — " NQd)

This lecture: partial correctness only (easier)

Slide 17

e

NICTA

Hoare Rules

{P} SKIP {P} {Plz—¢e]} z:=e¢ {P}

{Pra{R} {R}{Q}
{P} ci5¢0 {Q}

{PAb} e {Q {P A} {Q}
(P} IFLTHEN ELSEc; {Q)

{PAb}c{P} PA-D=Q
{P} WHILEbDO cOD {Q}

P=r {P}c{Q} @=0Q
Py ¢ {Q}

Slide 18

e

NICTA

Hoare Rules

F{P} SKIP {P} F{\o. P (o(z:=¢€0))} z:=e {P}

F{Pt e {R} F{R}{Q}
F{P} ci5e2 {Q}

F{Ao.PoAbo}ci {R} F{ . PoA-bo}c{Q}
F{P} IFbTHEN ¢, ELSEc; {Q}

F{do.PoAbo}c{P} No.PoA-bo= Qo
F{P} WHILEbDOcOD {Q}

No.Po= P o F{P}c{Q} No. Qo= Qo
F{P} c {@}

Slide 19

e

NICTA

Are the Rules Correct?

Soundness: F {P} ¢ {Q} == {P} c {Q}

Proof: by rule induction on + {P} ¢ {Q}

Demo: Hoare Logic in Isabelle

Slide 20

10

