NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

a=b=c=...

Content

NICTA

[0 Intro & motivation, getting started with Isabelle
[0 Foundations & Principles

e Lambda Calculus
e Higher Order Logic, natural deduction
e Term rewriting

[1 Proof & Specification Techniques

e Inductively defined sets, rule induction
e Datatypes, recursion, induction

e Calculational reasoning

e Hoare logic, proofs about programs
Locales, Presentation

Last time ...

NICTA

[1 fun, function
[1 Well founded recursion

NICTA

DEMO
MORE FUN

NICTA

CALCULATIONAL REASONING

The Goal

NICTA

_ &

= \“/ —~~
8 O 7
o | 8

e« SN /N /N /N /N

The Goal

NICTA

1

_ &

s
xw41_
1_I__ m:wwl

| . |
s B 4O g

Lo T e B o T o B oo |

e« SN /N /N /N /N

T
8

N—"

T T T
SCCCG

o N ~— ~— ~— ~— ™

Il
7 .
3
3

.
.

.
.

Can we do this in Isabelle?

6-a

The Goal
NICTA

r-x =1 (x-271

=1.z-z71

(@)t lgog?

= @)@ 2) 2

= (=)~ 1. 271

=(z7H) 7 (127

(1)1 g1
=1

Can we do this in Isabelle?

[1 Simplifier: too eager

6-b

The Goal

r-x =1 (x-271
=1.z.-27¢
(@)t lgog?
R G R
= (=)~ 1. 271
= (27)7t (127

(1)1 g1

=1

Can we do this in Isabelle?
[1 Simplifier: too eager
[1 Manual: difficult in apply style

6-C

NICTA

The Goal

r-x =1 (x-271
=1.z.-27¢
(@)t lgog?
R G R
= (=)~ 1. 271
= (27)7t (127

(1)1 g1

=1

Can we do this in Isabelle?
[1 Simplifier: too eager
[1 Manual: difficult in apply style
[Isar: with the methods we know, too verbose

6-d

NICTA

Chains of equations

NICTA
The Problem

shows a = d by transitivity of =

Chains of equations

NICTA
The Problem

a = b
= c

= d
shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

7-a

Chains of equations

NICTA
The Problem

a = b
= c

= d
shows a = d by transitivity of =
Each step usually nontrivial (requires own subproof)

Solution In Isar:

[1 Keywords also and finally to delimit steps

7-b

Chains of equations

NICTA
The Problem

a = b
= c

= d
shows a = d by transitivity of =
Each step usually nontrivial (requires own subproof)

Solution In Isar:

[1 Keywords also and finally to delimit steps
[...: predefined schematic term variable,
refers to right hand side of last expression

7-C

Chains of equations

NICTA
The Problem

a = b
= C
= d
shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

Solution In Isar:

[1 Keywords also and finally to delimit steps
[...: predefined schematic term variable,
refers to right hand side of last expression
[1 Automatic use of transitivity rules to connect steps

7-d

also/finally

NICTA

have "to = t;” [proof]

also

also/finally
NICTA
have "t, = t1” [proof] calculation register
also "to = t1”

8-a

also/finally
NICTA
have "t, = t1” [proof] calculation register
also "to = t1”
have "... =t5" [proof]

8-b

also/finally

have "t, = t1” [proof]
also
have "... =t5" [proof]

also

calculation register

”to — tlﬂ

”to — t2”

8-c

NICTA

also/finally

have "t, = t1” [proof]
also
have "... =t5" [proof]

also

also

8-d

calculation register

”to — tlﬂ

”to — t2”

NICTA

also/finally

have "t, = t1” [proof]

also
have "... =t5" [proof]
also
also
have ”--- =t," [proof]

8-e

calculation register

”to — tlﬂ

”to — t2”

”to — tn_lﬂ

NICTA

also/finally

have "t, = t1” [proof]

also

have ”.

also

also

have ”. .-

finally

.. = 1" [proof]

=t,,” [proof]

8-f

calculation register

”to — tlﬂ

”to — t2”
”to — tn_]_”
to = tn,

NICTA

also/finally

have "t, = t1” [proof]
also
have "... =t5" [proof]

also

also
have ”--- =t," [proof]
finally

show P

— 'finally’ pipes fact "to = ¢,,” into the proof

8-g

calculation register

”to — tlﬂ

”to — t2”
”to — tn_]_”
to = tn,

NICTA

More about also

NICTA

[0 Works for all combinations of =, < and <.

More about also

NICTA

[0 Works for all combinations of =, < and <.

[1 Uses all rules declared as [t rans] .

9-a

More about also

NICTA

[0 Works for all combinations of =, < and <.

[1 Uses all rules declared as [t rans] .

1] To view all combinations in Proof General:

Isabelle/lIsar — Show me — Transitivity rules

9-b

Designing [trans] Rules

NICTA

have ="[; ® r1" [proof]
also

have ”... ® ry” [proof]
also

10

Designing [trans] Rules

NICTA
have ="[; ® r1" [proof]
also
have ”... ® ry” [proof]
also

Anatomy of a [trans] rule:
[0 Usual form: plain transitivity [l1 ® r1;7m1 @ r2] = 11 ® r2

10-a

Designing [trans] Rules

have ="[; ® r1" [proof]
also

have ”... ® ry” [proof]
also

Anatomy of a [trans] rule:

[0 Usual form: plain transitivity [l1 ® r1;7m1 @ r2] = 11 ® r2
[0 More general form: [P 11 r1;Q r1 r2; A] = C 11 72

Examples:

10-b

NICTA

Designing [trans] Rules

have ="[; ® r1" [proof]
also

have ”... ® ry” [proof]
also

Anatomy of a [trans] rule:

[0 Usual form: plain transitivity [l1 ® r1;7m1 @ r2] = 11 ® r2
[0 More general form: [P 11 r1;Q r1 r2; A] = C 11 72

Examples:
[0 pure transitivity: [a =b;b=c] = a=c¢

10-c

NICTA

Designing [trans] Rules

have ="[; ® r1" [proof]
also

have ”... ® ry” [proof]
also

Anatomy of a [trans] rule:

[0 Usual form: plain transitivity [l1 ® r1;7m1 @ r2] = 11 ® r2
[0 More general form: [P 11 r1;Q r1 r2; A] = C 11 72

Examples:
[0 pure transitivity: [a =b;b=c] = a=c¢
0 mixed: [a<bb<c]=a<c

10-d

NICTA

Designing [trans] Rules

have ="[; ® r1" [proof]
also

have ”... ® ry” [proof]
also

Anatomy of a [trans] rule:

[0 Usual form: plain transitivity [l1 ® r1;7m1 @ r2] = 11 ® r2
[0 More general form: [P 11 r1;Q r1 r2; A] = C 11 72

Examples:
[0 pure transitivity: [a =b;b=c] = a=c¢
0 mixed: [a<bb<c]=a<c
[0 substitution: [P a;a=0] = Pb

10-e

NICTA

Designing [trans] Rules

have ="[; ® r1" [proof]
also

have ”... ® ry” [proof]
also

Anatomy of a [trans] rule:

[0 Usual form: plain transitivity [l1 ® r1;7m1 @ r2] = 11 ® r2
[0 More general form: [P 11 r1;Q r1 r2; A] = C 11 72

Examples:
[0 pure transitivity: [a =b;b=c] = a=c¢
0 mixed: [a<bb<c]=a<c
[0 substitution: [P a;a=0] = Pb
[0 antisymmetry: [a < b;b < a] = P

10-f

NICTA

Designing [trans] Rules

have ="[; ® r1" [proof]
also

have ”... ® ry” [proof]
also

Anatomy of a [trans] rule:

[]
[]

Usual form: plain transitivity [I1 ® ri;7r1 @ re] =11 © r2
More general form: [P l1 r1;Q r1 r2; A] = C' 11 2

Examples:

[]

[]
[]
[]
[]

pure transitivity: [a = b;b =c] = a =c¢

mixed: J[a < b;b<c]=a<c

substitution: [P a;a =0] = P b

antisymmetry: [a < b;b < a] = P

monotonicity: [a=fbb<cANzy. z<y=— fzx< fyl=a< fc

10-9

NICTA

NICTA

DEMO

11

HOL as programming language

NICTA

We have

[J numbers, arithmetic
[recursive datatypes
[1 constant definitions, recursive functions

12

HOL as programming language

NICTA

We have

numbers, arithmetic

recursive datatypes

constant definitions, recursive functions
= a functional programming language

N O B

can be used to get fully verified programs

Executed using the simplifier.

12-a

HOL as programming language

NICTA

We have

numbers, arithmetic

recursive datatypes

constant definitions, recursive functions
= a functional programming language

N O B

can be used to get fully verified programs

Executed using the simplifier. But:

1 slow, heavy-weight
[1 does not run stand-alone (without Isabelle)

12-b

Generating ML code

NICTA

Generate stand-alone ML code for

[1 datatypes
[function definitions
[J inductive definitions (sets)

13

Generating ML code

NICTA

Generate stand-alone ML code for

[1 datatypes
[function definitions
[J inductive definitions (sets)

Syntax (simplified):

code _module <structure-name> [file <name>]
contains

<ML-name> = <term>

<ML-name> = <term>

Generates ML stucture, puts it in own file or includes in current context

13-a

Value and Quickcheck

NICTA

Evaluate big terms quickly:

value "<term>"

[1 generates ML code
[J] runs ML
[1 converts back into Isabelle term

14

Value and Quickcheck

NICTA

Evaluate big terms quickly:

value "<term>"

[1 generates ML code
[J] runs ML
[1 converts back into Isabelle term

Try some values on current proof state:

guickcheck

[J generates ML code
[1 runs ML on random values for numbers and datatypes
[1 increasing size of data set until limit reached

14-a

Customisation

NICTA

[J lemma instead of definition: [code] attribute

lemma [code]: "(0 < Suc n) = True” by simp

15

Customisation

NICTA

[J lemma instead of definition: [code] attribute

lemma [code]: "(0 < Suc n) = True” by simp

[1 provide own code for types: types _code

types _code "x" ("(_*/)")

15-a

Customisation

NICTA

[J lemma instead of definition: [code] attribute

lemma [code]: "(0 < Suc n) = True” by simp

[1 provide own code for types: types _code

types _code "x" ("(_*/)")

[1 provide own code for consts: consts _code

consts _code "Pair” ("(_,/ J)")

15-b

Customisation

NICTA

[J lemma instead of definition: [code] attribute

lemma [code]: "(0 < Suc n) = True” by simp

[1 provide own code for types: types _code

types _code "x" ("(_*/)")

[1 provide own code for consts: consts _code

consts _code "Pair” ("(_,/ J)")

[J complex code template: patterns + attach

consts _code "wfrec” ("\ <module>wfrec?”)
attach {* fun wfrec f x = f (wfrec f) x; *}

15-c

Code for inductive definitions

NICTA

Inductive definitions are Horn clauses:

(0,Sucn) el
(n,m) e L= (Sucn,Sucm) € L

16

Code for inductive definitions

NICTA

Inductive definitions are Horn clauses:

(0,Sucn) el
(n,m) e L= (Sucn,Sucm) € L

Can be evaluated like Prolog

16-a

Code for inductive definitions

NICTA

Inductive definitions are Horn clauses:

(0,Sucn) el
(n,m) e L= (Sucn,Sucm) € L

Can be evaluated like Prolog
code _module T
contains X ="AXYV. (X,y) € l”
y="(3) el

generates

[1 something of type bool for x
[1 a possibly infinite sequence for y, enumerating all suitable _in (_, 5) € L

16-b

NICTA

DEMO

17

We have seen today ...

More fun

[]
[J Calculations: also/finally
[0 [trans]-rules

[]

Code generation

18

NICTA

