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[0 Intro & motivation, getting started with Isabelle
[0 Foundations & Principles

e Lambda Calculus
e Higher Order Logic, natural deduction
e Term rewriting

[1 Proof & Specification Techniques

e Inductively defined sets, rule induction
e Datatypes, recursion, induction

e More recursion, Calculational reasoning
e Hoare logic, proofs about programs
Locales, Presentation
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[1 High expressiveness, tweakable, termination proof manual

e function
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fun sep :: "a = "alist = ’a list”

where
"sepa (x#y#zs)=x#at#sepal(y#zs)
"Sep axs = XS”

fun ack :: "nat = nat = nat”
where
"ack O n = Sucn”
"ack (Sucm) 0 =ackm 1”
"ack (Suc m) (Suc n) = ack m (ack (Suc m) n)
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[1 The definiton:

e pattern matching in all parameters
e arbitrary, linear constructor patterns
e reads equations sequentially like in Haskell (top to bottom)

e proves termination automatically in many cases
(tries lexicographic order)

[1 Generates own induction principle

[1 May have fail to prove automation:

e use function (sequential) instead
e allows to prove termination manually
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[J Each fun definition induces an induction principle

[1 For each equation:

show that the property holds for the lhs provided it holds for each recursive call on the
rhs

[J Example sep.induct :

[ Aa- Pall;
Naw. Pa |w]

Naxyzs. Pa (y#zs) = P a (z#yH#zs);
| = Paxs
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|sabelle tries to prove termination automatically

[J For most functions this works with a lexicographic termination relation.
[1 Sometimes not = error message with unsolved subgoal
[1 You can prove automation separately.

function (sequential) quicksort where
quicksort [] =] |

quicksort (x#xs) = quicksort |y < xs.y < z|@Q[x|@ quicksort [y < xs.z < Y]
by pat_.completeness auto

termination
by (relation “measure length”) (auto simp: less_Suc_eq_le)
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|sabelle tries to prove termination automatically

[J For most functions this works with a lexicographic termination relation.
[1 Sometimes not = error message with unsolved subgoal
[1 You can prove automation separately.

function (sequential) quicksort where

quicksort [] =] |

quicksort (x#xs) = quicksort |y < xs.y < z|@Q[x|@ quicksort [y < xs.z < Y]
by pat_.completeness auto

termination
by (relation “measure length”) (auto simp: less_Suc_eq_le)

function Is the fully tweakable, manual version of fun
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How does fun/function work?
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We need.: general recursion operator

something like: rec F' = F (rec F)
(F' stands for the recursion equations)

Example:

[]
[]
[]

recursion equations: f0=0 f(Sucn)=fn
asone A-term:  f=An'.casen’ of 0= 0|Sucn= fn
functor: F = Af. An’.casen’ of 0= 0| Sucn = fn

rec:: ((a = B) = (a = B)) = (a = B) like above cannot exist in HOL (only total
functions)

But 'guarded’ form possible: wfrec :: (a x @) set = ((a = 8) = (o= B)) = (a = B)
(a x «) set a well founded order, decreasing with execution
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How does fun/function work?

Why rec F' = F (rec F')?

Because we want the recursion equations to hold.

Example:
F = MXg.An/.casen’ of 0=0|Sucn=gn
f = reckF
fO = reckFO

= F(recF)0
= (Ag. An/. casen’ of 0 = 0| Sucn = gn) (rec F) 0
= (case0of 0 = 0 |Sucn = recF n)
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How does fun/function work?

Example:

F
f

fo0

Why rec F' = F (rec F')?

Because we want the recursion equations to hold.

Ag. An/.casen’ of 0 =0 | Sucn=gn

rec F

rec F' 0

F (rec F) 0

(Ag. An/. case n’ of 0 = 0| Sucn = gn) (rec ') 0
(case 0 of 0 =0 | Sucn = rec F' n)

0
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Well Founded Orders

Definition
<, I1s well founded if well founded induction holds
wf r=VP. (Vz. Vy <, z.Py) — Px) — (Vx. P x)

Well founded induction rule;
wfr Az (Vy<,z. Py)=— Pz

P a

Alternative definition  (equivalent):

there are no infinite descending chains, or (equivalent):

every nonempty set has a minimal element wrt <,
mnrQzx = VYyeQ.y<L,x
wf r = VQ #{}.Im € Q. minr Q m)
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Well Founded Orders: Examples
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[1 < on NN is well founded
well founded induction = complete induction

[0 > and < on N are not well founded

0 xz<,y=xdvd y Ax # 1onIN is well founded
the minimal elements are the prime numbers

0 (a,b) <» (x,y) =a <1 xVa=zxAb<zyiswell founded
If <1 and <» are

[0 A<, B=A C B Afinite B is well founded

[1 C and C in general are not well founded

More about well founded relations: Term Rewriting and All That
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Back to recursion: rec F' = F (rec F') not possible
ldea: have wfrec R F' where R is well founded

Cut:
[1 only do recursion if parameter decreases wrt R
[1 otherwise: abort
[ arbitrary :: «
cut: (a=p0) = (axa)set=a= (a=p)
cut G Rx = \y. if (y,z) € R then G y else arbitrary
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Back to recursion: rec F' = F (rec F') not possible
ldea: have wfrec R F' where R is well founded

Cut:

[1 only do recursion if parameter decreases wrt R
[1 otherwise: abort
[ arbitrary :: «
cut: (a=p0) = (axa)set=a= (a=p)
cut G Rx = \y. if (y,z) € R then G y else arbitrary

wf R = wfrec R FF o = F (cut (wfrec R ') Rz) x

13-d
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Admissible recursion

[ recursive call for x only depends on parameters y <gr x
[1 describes exactly one function if R is well founded

admwf RF=Vfgx. (V2. (z,x) ER— fz=9gz2) —F fx=Fgzx

Definition of wf _rec: again first by induction, then by epsilon

Vz. (z,2) € R — (2,9 z) € wfrec_rel R F
(x, F g x) € wfrec_rel R F

wfrec R F'x = THE y. (x,y) € wfrec_rel R (Af . F (cut f R z) x)

More: John Harrison, Inductive definitions: automation and application
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