NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

Wit _rec

Content

NICTA

[0 Intro & motivation, getting started with Isabelle
[0 Foundations & Principles

e Lambda Calculus
e Higher Order Logic, natural deduction
e Term rewriting

[1 Proof & Specification Techniques

e Inductively defined sets, rule induction
e Datatypes, recursion, induction

e More recursion, Calculational reasoning
e Hoare logic, proofs about programs
Locales, Presentation

General Recursion

NICTA
The Choice

General Recursion

NICTA
The Choice

[1 Limited expressiveness, automatic termination

e primrec

3-a

General Recursion

NICTA
The Choice

[1 Limited expressiveness, automatic termination

e primrec

[J High expressiveness, termination proof may fail

e fun

3-b

General Recursion

NICTA
The Choice

[1 Limited expressiveness, automatic termination

e primrec

[J High expressiveness, termination proof may fail

e fun

[1 High expressiveness, tweakable, termination proof manual

e function

3-C

fun — examples

NICTA

fun sep :: "a = "alist = ’a list”

where
"sepa (X#y#zs)=x#a#sepal(y#zs)
"sep a Xs = Xs”

fun — examples

NICTA

fun sep :: "a = "alist = ’a list”

where
"sepa (x#y#zs)=x#at#sepal(y#zs)
"Sep axs = XS”

fun ack :: "nat = nat = nat”
where
"ack O n = Sucn”
"ack (Sucm) 0 =ackm 1”
"ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

4-a

fun

NICTA

[1 The definiton:

e pattern matching in all parameters
e arbitrary, linear constructor patterns
e reads equations sequentially like in Haskell (top to bottom)

e proves termination automatically in many cases
(tries lexicographic order)

fun

NICTA

[1 The definiton:

e pattern matching in all parameters
e arbitrary, linear constructor patterns
e reads equations sequentially like in Haskell (top to bottom)

e proves termination automatically in many cases
(tries lexicographic order)

[1 Generates own induction principle

5-a

fun

NICTA

[1 The definiton:

e pattern matching in all parameters
e arbitrary, linear constructor patterns
e reads equations sequentially like in Haskell (top to bottom)

e proves termination automatically in many cases
(tries lexicographic order)

[1 Generates own induction principle

[1 May have fail to prove automation:

e use function (sequential) instead
e allows to prove termination manually

5-b

fun — Iinduction principle

NICTA

[J Each fun definition induces an induction principle

fun — Iinduction principle

NICTA

[J Each fun definition induces an induction principle

[1 For each equation:

show that the property holds for the lhs provided it holds for each recursive call on the
rhs

6-a

fun — Iinduction principle

NICTA

[J Each fun definition induces an induction principle

[1 For each equation:

show that the property holds for the lhs provided it holds for each recursive call on the
rhs

[J Example sep.induct :

[Aa- Pall;
Naw. Pa |w]

Naxyzs. Pa (y#zs) = P a (z#yH#zs);
| = Paxs

6-b

Termination

NICTA

|sabelle tries to prove termination automatically

[J For most functions this works with a lexicographic termination relation.

Termination

NICTA

|sabelle tries to prove termination automatically

[J For most functions this works with a lexicographic termination relation.
[1 Sometimes not

7-a

Termination

NICTA

|sabelle tries to prove termination automatically

[J For most functions this works with a lexicographic termination relation.
[1 Sometimes not = error message with unsolved subgoal

7-b

Termination

NICTA

|sabelle tries to prove termination automatically

[J For most functions this works with a lexicographic termination relation.
[1 Sometimes not = error message with unsolved subgoal
[1 You can prove automation separately.

function (sequential) quicksort where
quicksort [] =] |

quicksort (x#xs) = quicksort |y < xs.y < z|@Q[x|@ quicksort [y < xs.z < Y]
by pat_.completeness auto

termination
by (relation “measure length”) (auto simp: less_Suc_eq_le)

7-C

Termination

NICTA

|sabelle tries to prove termination automatically

[J For most functions this works with a lexicographic termination relation.
[1 Sometimes not = error message with unsolved subgoal
[1 You can prove automation separately.

function (sequential) quicksort where

quicksort [] =] |

quicksort (x#xs) = quicksort |y < xs.y < z|@Q[x|@ quicksort [y < xs.z < Y]
by pat_.completeness auto

termination
by (relation “measure length”) (auto simp: less_Suc_eq_le)

function Is the fully tweakable, manual version of fun

7-d

NICTA

DEMO

How does fun/function work?

NICTA

We need.: general recursion operator

How does fun/function work?

NICTA

We need.: general recursion operator

something like: rec F' = F (rec F)

9-a

How does fun/function work?

NICTA

We need.: general recursion operator

something like: rec F' = F (rec F)
(F' stands for the recursion equations)

Example:

9-b

How does fun/function work?

NICTA

We need.: general recursion operator

something like: rec F' = F (rec F)
(F' stands for the recursion equations)

Example:

[J recursion equations: f0=0 f(Sucn)=fn

9-c

How does fun/function work?

We need.: general recursion operator

something like: rec F' = F (rec F)
(F' stands for the recursion equations)

Example:

[J recursion equations: f0=0 f(Sucn)=fn
[0 asone A-term: f=An'.casen’ of 0= 0|Sucn= fn

9-d

NICTA

How does fun/function work?

We need.: general recursion operator

something like: rec F' = F (rec F)
(F' stands for the recursion equations)

Example:

[J recursion equations: f0=0 f(Sucn)=fn
[0 asone A-term: f=An'.casen’ of 0= 0|Sucn= fn
O functor: F = XAf. n'.casen’ of 0 =0 |Sucn= fn

9-e

NICTA

How does fun/function work?

NICTA

We need.: general recursion operator

something like: rec F' = F (rec F)
(F' stands for the recursion equations)

Example:

[]
[]
[]

recursion equations: f0=0 f(Sucn)=fn
asone A-term: f=An'.casen’ of 0= 0|Sucn= fn
functor: F = Af. An’.casen’ of 0= 0| Sucn = fn

rec:: ((a = B) = (a = B)) = (a = B) like above cannot exist in HOL (only total
functions)

But 'guarded’ form possible: wfrec :: (a x @) set = ((a = 8) = (o= B)) = (a = B)
(a x «) set a well founded order, decreasing with execution

o-f

How does fun/function work?

NICTA
Why rec F' = F (rec F')?

10

How does fun/function work?

Example:

F =
/

Why rec F' = F (rec F')?

Because we want the recursion equations to hold.

Ag. An/.casen’ of 0 =0 | Sucn=gn
rec I’

10-a

NICTA

How does fun/function work?

NICTA
Why rec F' = F (rec F')?

Because we want the recursion equations to hold.

Example:
F = MXg.An/.casen’ of 0=0|Sucn=gn
f = reckF
fO = reckFO

10-b

How does fun/function work?

NICTA
Why rec F' = F (rec F')?

Because we want the recursion equations to hold.

Example:
F = MXg.An/.casen’ of 0=0|Sucn=gn
f = reckF
fO = reckFO
= F(recF)0

10-c

How does fun/function work?

NICTA
Why rec F' = F (rec F')?

Because we want the recursion equations to hold.

Example:
F = MXg.An/.casen’ of 0=0|Sucn=gn
f = reckF
fO = reckFO

= F(recF)0
(Ag. An/. case n’ of 0 = 0| Sucn = gn) (rec ') 0

10-d

How does fun/function work?

Why rec F' = F (rec F')?

Because we want the recursion equations to hold.

Example:
F = MXg.An/.casen’ of 0=0|Sucn=gn
f = reckF
fO = reckFO

= F(recF)0
= (Ag. An/. casen’ of 0 = 0| Sucn = gn) (rec F) 0
= (case0of 0 = 0 |Sucn = recF n)

10-e

NICTA

How does fun/function work?

Example:

F
f

fo0

Why rec F' = F (rec F')?

Because we want the recursion equations to hold.

Ag. An/.casen’ of 0 =0 | Sucn=gn

rec F

rec F' 0

F (rec F) 0

(Ag. An/. case n’ of 0 = 0| Sucn = gn) (rec ') 0
(case 0 of 0 =0 | Sucn = rec F' n)

0

10-f

NICTA

Well Founded Orders

NICTA

Definition
<, I1s well founded if well founded induction holds
wf r=VP. (Vz. Vy <, z.Py) — Px) — (Vx. P x)

11

Well Founded Orders

Definition
<, I1s well founded if well founded induction holds
wf r=VP. (Vz. Vy <, z.Py) — Px) — (Vx. P x)

Well founded induction rule;
wfr Az (Vy<,z. Py)=— Pz

P a

11-a

NICTA

Well Founded Orders

Definition
<, I1s well founded if well founded induction holds
wf r=VP. (Vz. Vy <, z.Py) — Px) — (Vx. P x)

Well founded induction rule;
wfr Az (Vy<,z. Py)=— Pz

P a

Alternative definition (equivalent):

there are no infinite descending chains, or (equivalent):

every nonempty set has a minimal element wrt <,
mnrQzx = VYyeQ.y<L,x
wf r = VQ #{}.Im € Q. minr Q m)

11-b

NICTA

Well Founded Orders: Examples

NICTA

[1 < on NN is well founded
well founded induction = complete induction

12

Well Founded Orders: Examples

NICTA

[1 < on NN is well founded
well founded induction = complete induction

[0 > and < on N are not well founded

12-a

Well Founded Orders: Examples

NICTA

[1 < on NN is well founded
well founded induction = complete induction

[0 > and < on N are not well founded

0 xz<,y=xdvd y Ax # 1onIN is well founded
the minimal elements are the prime numbers

12-b

Well Founded Orders: Examples

NICTA

[1 < on NN is well founded
well founded induction = complete induction

[0 > and < on N are not well founded

0 xz<,y=xdvd y Ax # 1onIN is well founded
the minimal elements are the prime numbers

O (a,b) <r (z,y) =a<1xVa=zAb<syis well founded
If <; and <2 are

12-c

Well Founded Orders: Examples

NICTA

[1 < on NN is well founded
well founded induction = complete induction

[0 > and < on N are not well founded

0 xz<,y=xdvd y Ax # 1onIN is well founded
the minimal elements are the prime numbers

O (a,b) <r (z,y) =a <1 xVa=zAb<zyis well founded
If <1 and <» are
0 A<, B=A C B A finite B is well founded

12-d

Well Founded Orders: Examples

NICTA

[1 < on NN is well founded
well founded induction = complete induction

[0 > and < on N are not well founded

0 xz<,y=xdvd y Ax # 1onIN is well founded
the minimal elements are the prime numbers

0 (a,b) <» (x,y) =a <1 xVa=zxAb<zyiswell founded
If <1 and <» are

[0 A<, B=A C B Afinite B is well founded

[1 C and C in general are not well founded

More about well founded relations: Term Rewriting and All That

12-e

The Recursion Operator

NICTA

Back to recursion: rec F' = F (rec F') not possible

|dea:

13

The Recursion Operator

NICTA

Back to recursion: rec F' = F (rec F') not possible

ldea: have wfrec R F' where R is well founded

13-a

The Recursion Operator

NICTA
Back to recursion: rec F' = F (rec F') not possible
ldea: have wfrec R F' where R is well founded

Cut:

[1 only do recursion if parameter decreases wrt R
[1 otherwise: abort

13-b

The Recursion Operator

Back to recursion: rec F' = F (rec F') not possible
ldea: have wfrec R F' where R is well founded

Cut:
[1 only do recursion if parameter decreases wrt R
[1 otherwise: abort
[arbitrary :: «
cut: (a=p0) = (axa)set=a= (a=p)
cut G Rx = \y. if (y,z) € R then G y else arbitrary

13-c

NICTA

The Recursion Operator

NICTA

Back to recursion: rec F' = F (rec F') not possible
ldea: have wfrec R F' where R is well founded

Cut:

[1 only do recursion if parameter decreases wrt R
[1 otherwise: abort
[arbitrary :: «
cut: (a=p0) = (axa)set=a= (a=p)
cut G Rx = \y. if (y,z) € R then G y else arbitrary

wf R = wfrec R FF o = F (cut (wfrec R ') Rz) x

13-d

The Recursion Operator

NICTA

Admissible recursion

[recursive call for x only depends on parameters y <gr x
[1 describes exactly one function if R is well founded

14

The Recursion Operator

NICTA

Admissible recursion

[recursive call for x only depends on parameters y <gr x
[1 describes exactly one function if R is well founded

admwf RF=Vfgx. (V2. (z,x) ER— fz=9gz2) —F fx=Fgzx

14-a

The Recursion Operator

NICTA

Admissible recursion

[recursive call for x only depends on parameters y <gr x
[1 describes exactly one function if R is well founded

admwf RF=Vfgx. (V2. (z,x) ER— fz=9gz2) —F fx=Fgzx

Definition of wf _rec: again first by induction, then by epsilon

Vz. (z,2) € R — (2,9 z) € wfrec_rel R F
(x, F g x) € wfrec_rel R F

14-b

The Recursion Operator

NICTA

Admissible recursion

[recursive call for x only depends on parameters y <gr x
[1 describes exactly one function if R is well founded

admwf RF=Vfgx. (V2. (z,x) ER— fz=9gz2) —F fx=Fgzx

Definition of wf _rec: again first by induction, then by epsilon

Vz. (z,2) € R — (2,9 z) € wfrec_rel R F
(x, F g x) € wfrec_rel R F

wfrec R F'x = THE y. (x,y) € wfrec_rel R (Af . F (cut f R z) x)

More: John Harrison, Inductive definitions: automation and application

14-c

NICTA

DEMO

15

